MAHARASHTRA
 NATI ONAL TALENT SEARCH EXAMI NATI ON, 2019-20 STAGE-01

SCHOLASTI C APTITUDE TEST(SAT)

SOLUTI ONS

PHYSICS SOLUTION

1. 4

Time of flight,
$\mathrm{T}=\frac{2 \mathrm{u}}{\mathrm{g}} \Rightarrow \mathrm{u}=\frac{\mathrm{T} \times \mathrm{g}}{2}$
$u=\frac{8 \times 10}{2} \Rightarrow 40 \mathrm{~ms}^{-1}$
Max. height reached, $\mathrm{H}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=\frac{(40)^{2}}{2 \times 10}=80 \mathrm{~m}$
2.

```
Specific heat capacity of water = 1 cal/g- }\mp@subsup{}{}{\circ}\textrm{C
Latent heat of fusion of ice =80 cal/g
Latent heat of vaporization of water =540 cal/g
Lat final temperature of mixture be T'C
Taking reference temperature as }\mp@subsup{0}{}{\circ}\textrm{C
Heat taken from steam = 200\times540+200\times1\times100=128000 cal
Hat given to ice to convert into water at 0}\mp@subsup{0}{}{\circ}\textrm{C
= 800 }\times8
= 64000 cal
Remaining heat to be given to mixture
128000-64000
= 64000 cal
\therefore64000=(800+200) }\times1\times(\textrm{T}-0
T=64 C
```

3. 2

Rods work in low light conditions to help night vision, but cones work in day light and are responsible for colour discrimination.
4. 1

5. 3
theoretical
6. 2

Using Snall's law,
$1 \times \sin 45^{\circ}=\mu \times \sin 30^{\circ}$
$\mu=\sqrt{2}=\frac{C}{V}$
$V=\frac{3 \times 10^{8}}{\sqrt{2}}$
$V=2.12 \times 10^{6} \mathrm{~m} / \mathrm{s}$
7. 2
theoretical
8. 2
$R=\frac{V^{2}}{P_{1}}=\frac{(220)^{2}}{1320}$
$\mathrm{i}_{1}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{220 \times 1320}{(220)^{2}} \Rightarrow 6 \mathrm{~A}$
Now, at low temp., $i_{2}=i_{1} / 3=2 A$

$$
\mathrm{P}_{2}=\mathrm{Vi}_{2}
$$

\therefore Power used, $=200 \times 2$

$$
=440 \mathrm{~W}
$$

9. 4
$\mathrm{m}=250 \mathrm{~kg}, \mathrm{t}=60 \mathrm{sec}, \mathrm{h}=150 \mathrm{~m}$
Power of pump, $P=\frac{m g h}{t}=\frac{250 \times 10 \times 150}{60}$

$$
\begin{aligned}
& P=\frac{250 \times 10 \times 150}{60 \times 746}(\text { H.P. }) \\
& =8.38 \text { H.P. } \\
& \therefore \text { Required power should be } 9 \text { H.P. }
\end{aligned}
$$

10. 3

Constant temperature $=\frac{80+50}{2}=65^{\circ} \mathrm{C}$
On touching, heat exchange by conduction without touching, heat exchange by radiation.
11. 1

For lens,
$V=\frac{u f}{u+f} \Rightarrow \frac{12 \times 20}{-12+20}$
$\mathrm{V}=-30 \mathrm{~cm}$
for mirror, object distance $=30+10 \Rightarrow 40 \mathrm{~cm}$
\therefore Final image $=40 \mathrm{~cm}$ behind mirror.
12. 4
theoretical
13. 1

Power of combination :

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3} \\
& 2.7=2.5+1.7+\mathrm{P}_{3} \\
& \mathrm{P}_{8}=-1.5 \mathrm{D} \\
& \therefore \mathrm{~F}_{8}=\frac{100}{\mathrm{P}_{8}}=\frac{10.0}{-1.5} \\
& =-66.66 \mathrm{~cm}
\end{aligned}
$$

NOTE:
Answer of Q.NO. 2 is coming $64^{\circ} \mathrm{C}$.
Q.NO. 5, 7, 12 are theoretical and hence no solutions are required for these questions.

CHEMISTRY SOLUTION

14. 3
(Group 13-18) P-block elements.
15. 2

Platinum exist in free state.
16. 4

Ethanoic acid is known as Glacial Acetic Acid.
17. 3

Trans Uranic element.
18. 3
$\mathrm{C}_{2} \mathrm{H}_{2}$ ethyne
19. 1

3422 melting point of Tungsten.
20. 3
$\mathrm{NH}_{4} \mathrm{OH}$ - Weak base due to less ionisation
21. $\quad 2 \mathrm{C}_{6} \mathrm{H}_{6}$
22. 1

23. 4

60 - 70 carbon \% in lignite.
24. 4

Copper sulphate solution
25. 4

Aqua regia ($\mathrm{HCl}: \mathrm{HNO}_{3}$)
26. 2

Colourless due to formation of ZnSO_{4} (Bonus)

BIOLOGY SOLUTION

27. (2)

Mutation is a sudden change which occurs in any nucleotide sequence
$28 . \quad$ (3)
During Anaphase step of mitosis, centromeres split and thereby sister chromatids of each chromosome separate and they are pulled apart in opposite direction.
29. (3) In the given figure, labelled part C is Cowper's gland.
$30 . \quad$ (1)
Zygote formation step takes place during sexual reproduction while other three are types of asexual reproduction.
$31 . \quad(3)$
Red panda and musk deer are rare species.
32. (2)

Planaria is an example of animal is phylum Platyhelminthes.
$33 .(4)$
Octopus belonging to phylum Mollusca can perform three types of locomotion swimming, creeping and walking.
$34 . \quad$ (1)
Saccharomyces cerevisiae is used in preparing beverage cider by fermenting juice in apple.
35. (3)

Aspergillus niger is used to prepare chocolates and toffees from sugar molasses and salt.
36. (2)

Golden Rice is a variety of rice produced through genetic engineering to synthesize vitamin A (Beta Carotene)
37. (4)

Maharashtra is the first state to start a separate cyber crime unit.
$38 . \quad$ (1)
Impact of disaster \rightarrow Response \rightarrow Resurgence \rightarrow Preparation \rightarrow Redemption \rightarrow Preparedness
$39 .(1)$
Turner's syndrome is a chromosomal disorder in which a female is born with only one X chromosome, 44+ X 0
40. (3)

Clostridium bacteria causes spoilage of cooked/tinned food causing food poisoning.

SOCIAL STUDIES

41.	1
42.	4
43.	2
44.	4
45.	3
46.	4
47.	1
48.	2
49.	Bonus
50.	4
51.	3
52.	2
53.	1
54.	1
55.	4
56.	2
57.	3
58.	1
59.	4
60.	2
61.	4
62.	1
63.	4
64.	4
65.	2
66.	3
67.	4
68.	2
69.	3
70.	2
71.	4
72.	1
73.	3
74.	4
75.	4
76.	2
77.	3
78.	3
79.	1
80.	2

MATHS SOLUTION
81. Numbers divisible by 7 are $7,14,21, \ldots . .994$ $\therefore \quad a_{n}=7+(n-1) 7$
$994=7[1+n-1]$
$n=142$
$\therefore \quad \mathrm{S}_{142}=\frac{142}{2}[7+994]$
$=71071$
82. Dividend
$=20 \%$ of 100×160
$=20 \times 160$
$=3200$
Return \% $=\frac{3200}{19200} \times 100$
= 16.67\%
83. $\frac{x^{2}(x+7)-1(x+7)}{(x-1)(x+7)}=\frac{(x-1)(x+1)(x+7)}{(x-1)(x+7)}$
$=x+1$
84. Suppose speed of boat $=x \mathrm{~km} / \mathrm{hr}$

Speed of stream $=y \mathrm{~km} / \mathrm{hr}$
$\therefore \quad(x+y) 3=30 \Rightarrow x+y=10$

$$
(x-y) 5=30 \Rightarrow x-y=6
$$

On Adding

$$
\begin{aligned}
& \Rightarrow 2 x=16 \\
& x=8
\end{aligned}
$$

Speed of boat $=8 \mathrm{~km} / \mathrm{hr}$
85. Difference $=5_{\text {even }}-5_{\text {odd }}$
$=(2+4+6+\ldots .+1000)-(1+3+5+\ldots .+999)$
$=\frac{500}{2}[2+1000]-\frac{500}{2}[1+999]$
$=\frac{500}{2}[1002-1000]$
$=500$
86. Median $=L+\frac{\left[\frac{N}{2}-c f\right]}{f} \times h$

$$
\begin{aligned}
& =50+\left[\frac{50-38}{18}\right] \times 10 \\
& =50+6.67 \\
& =56.67
\end{aligned}
$$

87. $(21-x)(35-x)=(27-x)^{2}$

$$
\Rightarrow 27^{2}-54 x+x^{2}=21 \times 35-21 x-35 x+x^{2}
$$

$$
\Rightarrow 2 \mathrm{x}=21 \times 35-27^{2}
$$

$$
2 x=6
$$

$$
x=3
$$

$$
x^{2}=9
$$

88. $d_{1}-d_{2}=4$

$\mathrm{d}_{1} \mathrm{~d}_{2}=192$

$$
\begin{aligned}
& \therefore\left(\frac{d_{1}}{2}\right)^{2}+\left(\frac{d_{2}}{2}\right)=a^{2} \Rightarrow d_{1}^{2}+d_{2}^{2}=4 a^{2} \\
& \Rightarrow\left(d_{1}-d_{2}\right)^{2}+2 d_{1} d_{2}=4 a^{2} \\
& \quad a^{2}=100 \\
& \quad \Rightarrow a=10
\end{aligned}
$$

89. Suppose speed of boat $=x \mathrm{~km} / \mathrm{hr}$

Speed of stream $=y=k m / h r$
$\therefore(\mathrm{x}+\mathrm{y}) 3=30 \Rightarrow \mathrm{x}+\mathrm{y}=10$
$(x-y) 5=30 \Rightarrow x-y=6$
On adding
$\Rightarrow 2 \mathrm{x}=16$
$\mathrm{x}=8$
90. $\quad\left|\begin{array}{ll}3 \sqrt{5} & 6 \\ 5 & \mathrm{~m}\end{array}\right|=0$
$3 \sqrt{5} m-30=0$
$3 \sqrt{5} \mathrm{~m}=30$
$M=\frac{10}{\sqrt{5}}=2 \sqrt{5}$
91. Suppose

$A P=C$
$P B=a$
$A B=b$
$\therefore \frac{\mathrm{C}^{2}}{\mathrm{~b}^{2}}=\frac{1}{2}$
$\frac{C}{b}=\frac{1}{\sqrt{2}}$
$\frac{b-a}{b}=\frac{1}{\sqrt{2}}$
$1-\frac{a}{b}=\frac{1}{\sqrt{2}}$
$\frac{\mathrm{a}}{\mathrm{b}}=1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}$
92. $\frac{\mathrm{AD}}{\mathrm{BD}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

$A D=K$
$B D=\sqrt{3} K$
$A B^{2}=K^{2}+(\sqrt{3} K)^{2}$
$A B=2 K$
Now
$\frac{A D}{D C}=\tan 60^{\circ}=\sqrt{3}$
$\frac{\mathrm{K}}{\mathrm{DC}}=\sqrt{2} \Rightarrow \mathrm{DC}=\frac{\mathrm{K}}{\sqrt{3}}$
$A C=\sqrt{\frac{K^{2}}{3}+K^{2}}=K \cdot \frac{2}{\sqrt{3}}$

$$
\begin{aligned}
\therefore \quad & \frac{\operatorname{Per}(\triangle A B D)}{\operatorname{Per}(\triangle A C D)}=\frac{K+\sqrt{3} K+2 K}{\frac{2}{\sqrt{3}} K+\frac{K}{\sqrt{3}}+K} \\
& =\frac{(3+\sqrt{3})}{3+\sqrt{3}} \sqrt{3} \\
& =\sqrt{3}: 1
\end{aligned}
$$

93. $\angle \mathrm{APT}=\angle \mathrm{TQB}$

Which are alternate angles
$\therefore \mathrm{PA} \| \mathrm{QB}$
94. On x-axis, ordinate is zero
$\therefore \mathrm{Q}$ and S lie on X -axis
So, $\mathrm{P}, \mathrm{R}, \mathrm{T}$ don't lie on X -axis
95. $\tan \theta=\frac{6}{2 \sqrt{3}}$

$$
\begin{aligned}
& =\sqrt{3} \\
& \theta=60^{\circ}
\end{aligned}
$$

96. Suppose centre is $O(x, y)$

R $(3,3)$
$\therefore \mathrm{OP}^{2}=\mathrm{OQ}^{2}=\mathrm{OR}^{2}$
$\Rightarrow(x-6)^{2}+(y+6)^{2}=(x-3)^{2}+(y+7)^{2}=(x-3)^{2}+(y-3)^{2}$
$\Rightarrow x^{2}+36-12 x+y^{2}+36+12 y$
$=x^{2}+9-6 x+y^{2}+9-6 y$
$=x^{2}+9-6 x+y^{2}+49+14 y$
II
Comparing I and II
$\Rightarrow-6 x+18 y=-54$

$$
-x+3 y=-9
$$

And taking last two
$-20 y=40$
$y=-2$
97. $\frac{1}{3} \pi(7)^{2} \times 9=11 \times 6 \times h$
$\mathrm{h}=7 \mathrm{~cm}$
98. $\frac{\mathrm{h}_{1}}{\mathrm{x}}=\tan 30^{\circ}$

$h_{1}=x \times \frac{1}{\sqrt{3}}=\frac{x}{\sqrt{3}}$
And
$\frac{h_{2}}{\mathrm{x}}=\tan 60^{\circ}=\sqrt{3}$
$h_{2}=\sqrt{3} x$
$\therefore \frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\frac{\mathrm{x} / \sqrt{3}}{\sqrt{3} \mathrm{x}}=\frac{1}{3}$
99. $\frac{4}{3} \pi(3)^{3}=\pi\left(\frac{2}{10}\right)^{2} h$
$\mathrm{h}=9 \mathrm{~m}$
100. $\triangle A B D \square \triangle A C B$

$\frac{A B}{A C}=\frac{B D}{C B}=\frac{A D}{A B}$
$\frac{\mathrm{b}}{18}=\frac{\mathrm{C}}{\mathrm{a}}=\frac{8}{\mathrm{~b}}$
$b^{2}=18 \times 8$
$b=12$

