CHANDI GARH NTSE STAGE-1 2019-20 (SCHOLASTIC APTITUDE TEST - SAT)

ANSWER KEYS

1. A	2. B	3. A	4. A	5. C
6. A	7. A	8. C	9. D	10.D
11.D	12.A	13.B	14.B	15.C
16.D	17.C	18.A	19.C	20.A
21.A	22.C	23.A	24.D	25.C
26.C	27.D	28.D	29.A	30.C
31.C	32.D	33.D	34.C	35.B
36.B	37.D	38. D	39.B	40.D
41.C	42.D	43.C	44.D	45.C
46.C	47.C	48.C	49.B	50.D
51.A	52.B	53.A	54.A	55.D
56.C	57. *	58.A	59.B	60.B
61.B	62.B	63.D	64.B	65.B
66.B	67.D	68.D	69.A	70.B
71.C	72.C	73.B	74.B	75.C
76.C	77.B	78.C	79.B	80.B
81.B	82. *	83.B	84.C	85.D
86.D	87.A	88.C	89.B	90.B
91.D	92.C	93.C	94.A	95.A
96.D	97.D	98.A	99.A	100.B

* None of the option is correct

HINTS \& SOLUTION

BIOLOGY

41. C.

Sol: Apomixis is the asexual formation of seed from the maternal tissues of ovule, avoiding the process of fertilization.
42. D

Sol: Because intercalary meristem is present at nodes \& internodes.
43. C

Sol: Because pteridophytes and gymnosperms have xylem and phloem but absent in bryophytes and thallophytes.
44. D

Sol: Pepsin helps in the digestion of proteins
45. C

Sol: Because colour blindness is a recessive X-linked disease.
46. C

Sol: Because ' B ' tube has 5% salt solution and no change noticed as the solution in cylinder is isotonic with respect to B.
47. C

Sol: Because mitochondria and chloroplasts contain DNA and ribosomes (protein synthesizing machinery)
48. C

Sol: Haptopropism is the movement in which plant moves or grow in response to touch or contact stimuli.
49. B

Sol: Because chemical signals are released from the axonal end of the neuron.
50. D

Sol: Because these organs have common organization and different functions.
51. A

Sol: Due to biomagnification the non-biodegradable pollutants retained in the body tissues.
52. B

Sol: Because unisexual flowers are those in which sexes are separate
53. B

Sol: Because of anaerobic respiration in muscles.
54. A

Sol: Urine formation occurs in kidney which enters into ureters and then into urinary bladder and comes out through urethra.

MATHEMATICS

55. D

Sol: $B D=1 \mathrm{~cm}$
$B M=\frac{1}{2} C M$
$\mathrm{AM}=\sqrt{5^{2}-\left(\frac{1}{2}\right)^{2}}$
$=\frac{\sqrt{99}}{2}=\frac{3 \sqrt{11}}{2}$

$A C=2 A M=3 \sqrt{11}$
Area of Rhombus $=\frac{1}{2}(A C)(B D)=\frac{1}{2}(3 \sqrt{11}) \cdot 1=\frac{3(3.32)}{2}=\frac{9.92}{2}=4.96 \mathrm{~cm}^{2}$
56. C (Rs. should be omitted from options)

Sol: 12 oranges sales price $=1$ Rs
1 orange sales price $=\frac{1}{12} \mathrm{Rs}$
S. P of one orange $=\frac{1}{12} \mathrm{Rs}$

Loss = 20\%
$\mathrm{Cp}=$
If SP is 80 Rs. then $\mathrm{CP}=100 \mathrm{Rs}$
If SP is Rs. 1 then $\mathrm{CP}=\frac{100}{80} \mathrm{Rs}$.
If SP is Rs. $1 / 12$ then $\mathrm{CP}=\frac{5}{48} \mathrm{Rs}$.
For 20% gain S.P of one orange $=\frac{5}{48} \times \frac{120}{100}=\frac{1}{8}$ Rs.
In Rs.1, He should sell 8 oranges
57.

Sol: (Given Options are incorrect)
$T_{n}=S_{n}-S_{n-1}$
$=\frac{3 n^{2}}{2}+\frac{5 n}{2}-\left(\frac{3(n-1)^{2}}{2}+5\left(\frac{n-1}{2}\right)\right)$
$\mathrm{T}_{\mathrm{n}}=3 \mathrm{n}+1$
$\mathrm{T}_{25}=25(3)+1=76$
58. A

Sol: Total days 366
$\mathrm{n}(\mathrm{E})=2$
n (S) $=7$
SM, MT, TW, WTh, ThF, F S, S S

$$
\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{~S})}=\frac{2}{7}
$$

59. B

Sol: $\quad A+B=90^{\circ}$

$$
\begin{aligned}
& \frac{\tan A \tan \left(90^{\circ}-A\right)+\tan A \cot \left(90^{\circ}-A\right)}{\sin A \sec \left(90^{\circ}-A\right)}-\frac{\sin ^{2}\left(90^{\circ}-A\right.}{\cos ^{2} A} \\
& \Rightarrow \frac{\tan A \cot A+\tan A \tan A}{\sin A \cdot \operatorname{cosec} A}-\frac{\cos ^{2} A}{\cos ^{2} A} \\
& \Rightarrow 1+\tan ^{2} A-1 \\
& =\tan ^{2} A=\tan ^{2}\left(90^{\circ}-B\right)=\cot ^{2} B
\end{aligned}
$$

60. B

Sol: \quad Area of unshaded portion $=2\left(\frac{\sqrt{3}}{4} x^{2}\right)$
Area of $\triangle \mathrm{ABC}=\frac{\sqrt{3}}{4}(3 \mathrm{x})^{2}$
$\frac{\text { Area of Shaded portion }}{\text { area of } \triangle \mathrm{ABC}}=\frac{\frac{\sqrt{3}}{4}\left(9 x^{2}-2 x^{2}\right)}{\frac{\sqrt{3}}{4}\left(9 x^{2}\right)}=\frac{7}{9}$

$$
\mathrm{AF}=\mathrm{AG}=2 \mathrm{x}
$$

$\mathrm{BF}=\mathrm{BD}=\mathrm{FD}=\mathrm{EC}=\mathrm{CG}=\mathrm{EG}=\mathrm{DE}=\mathrm{x}$
61. B

Sol:
Volume of solid $=3$ volume of cone
$\pi \mathrm{r}^{2} \mathrm{H}+\frac{1}{3} \pi^{2} \mathrm{~h}=3\left(\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}\right)$
$H=\frac{2 h}{3}$

62. B

Sol: $\quad \frac{3150}{x}=\tan 60^{\circ}=\sqrt{3}$ \qquad
$\frac{3150-\mathrm{h}}{\mathrm{x}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \ldots \ldots . .2$
$\Rightarrow \frac{3150}{3150-\mathrm{h}}=3 \Rightarrow 3150=9450-3 \mathrm{~h}$

$$
\begin{aligned}
3 \mathrm{~h} & =6300 \\
\mathrm{H} & =2100 \mathrm{~m}
\end{aligned}
$$

63. D

Sol: $\quad \mathrm{SI}=\frac{\mathrm{P} \times 8 \times 2}{100}$
$\mathrm{CI}=\mathrm{P}\left(1+\frac{8}{100}\right)^{2}-\mathrm{P}$
$=\left(\frac{27}{25} \frac{27}{25}-1\right) \mathrm{P}$
$\mathrm{Cl}-\mathrm{SI}=6.40 \mathrm{Rs}$.
$P\left(\frac{729-625}{625}\right)-P\left(\frac{4}{25}\right)=\frac{32}{5}$
$P\left(\frac{104-100}{625}\right)=\frac{32}{5} \mathrm{P}$
$\Rightarrow P \times \frac{4}{625}=\frac{32}{5}$
$P=1000$ Rs.
64. B

Sol: a, b, c, d, e are in continuous proportion

$$
\begin{aligned}
& \frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=x \quad \text { (say) } \\
& d=e x \\
& c=d x=e x^{2} \\
& b=c x=e x^{3} \\
& a=b x=e x^{4} \\
& \\
& \Rightarrow \frac{a}{e}=x^{4}
\end{aligned}
$$

$\frac{a^{4}}{b^{4}}=x^{4}$
65. B

Sol:

$\frac{1(1)+2(3)}{3}=p \Rightarrow p=\frac{7}{3}$
$\frac{1(2)+2(-4)}{3}=-2$

$Q\left(\frac{5}{3}, \mathrm{q}\right)$
Then $\mathrm{q}=0$
$x=\frac{2(1)+1(3)}{3}=\frac{5}{3}$
$y=\frac{2(2)+1(-4)}{3}=0$
$\mathrm{p}=\frac{7}{3}, \mathrm{q}=0$
66. B

Sol: For maximum area of $\Delta \mathrm{ABC}=\frac{1}{2}\left(2 r_{1}\right) \cdot r_{1}$
$r_{1}=\frac{r}{16}$
maximum area of $\triangle A B C=\frac{r^{2}}{256}$

67. D

Sol: $\quad x+y+z=0 \quad x \neq 0, y \neq 0, z \neq 0$
$\frac{x^{2}}{y z}+\frac{y^{2}}{x z}+\frac{z^{2}}{x y}=\frac{x^{3}+y^{3}+z^{3}}{x y z}$
of $x+y+z=0$ then $x^{3}+y^{3}+z^{3}=3 x y z$
$\Rightarrow \frac{x^{3}+y^{3}+z^{3}}{x y z}=3$
68. D

Sol: $\quad x^{2}+y^{2}+z^{2}=r^{2}$
$x=r \cos a \cos b$
$y=r \cos a \sin b$
$\Rightarrow r^{2} \cos ^{2} a \cos ^{2} b+r^{2} \cos ^{2} a \sin ^{2} b+z^{2}=r^{2}$
$r^{2} \cos ^{2} a\left(\cos ^{2} b+\sin ^{2} b\right)+z^{2}=r^{2}$
$r^{2} \cos a+z^{2}=r^{2}$
$z^{2}=r^{2}\left(1-\cos ^{2} a\right)$
$z^{2}=r^{2} \sin ^{2} a$
$\Rightarrow z=r \sin a$
69. A

Sol: $\quad \alpha$ and β are roots of equation $3 x^{2}-5 x+3=0$
$\alpha+\beta=\frac{5}{3}$
$\alpha \beta=1$
Equation of roots whose roots are $\square^{2} \square$ and $\square \square^{\square}$ is
$x^{2}-S x+P=0$
$S=\alpha^{2} \beta+\alpha \beta^{2}=\alpha \beta(\alpha+\beta)=\frac{5}{3}$
$P=\alpha^{2} \beta . \alpha \beta^{2}=(\alpha \beta)^{3}=1^{3}=1$
equation
$x^{2}-\frac{5}{3} x+1=0$
$3 x^{2}-5 x+3=0$
70. B

Sol: $\quad \ell+b+h=19 \quad(\ell+b+h)^{2}=361$
$\sqrt{\ell^{2}+\mathrm{b}^{2}+\mathrm{h}^{2}}=5 \sqrt{5} \quad \ell^{2}+\mathrm{b}^{2}+\mathrm{h}^{2}+2(\ell \mathrm{~b}+\mathrm{bh}+\ell \mathrm{h})=361$
$\Rightarrow \ell^{2}+\mathrm{b}^{2}+\mathrm{h}^{2}=125 \quad 125+2(\ell \mathrm{~b}+\mathrm{bh}+\ell \mathrm{h})=361$
$\Rightarrow 2(\ell b+b h+\ell h)=236 \mathrm{~cm}^{2}$
71. C

Sol: $\quad r$ is inradius of circle whose sides $12,10,10$
$r=\frac{\Delta}{s}=\frac{48}{16}=3$
$2 \mathrm{~s}=32$
$\mathrm{s}=16$
$\Delta=\sqrt{16.4 .6 .6}$
Water over flowed $=6.8=48 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& =\text { volume of sphere }=\frac{4}{3} \pi^{3}=\frac{4}{3} \pi(3)^{3}=36 \pi \mathrm{~cm}^{3} \\
& =\frac{\text { water over flowed }}{\text { water filled in conical vessel }}=\frac{3}{8}
\end{aligned}
$$

72. C

Sol: $\quad r=\frac{\Delta}{s}=\frac{\frac{1}{2} a b}{\frac{1}{2}(a+b+c)}$

$$
\begin{aligned}
& =\frac{a b}{(a+b+c)} \\
& =\frac{a b(a+b-c)}{(a+b+c)(a+b-c)} \\
& =\frac{a b(a+b-c)}{\left((a+b)^{2}-c^{2}\right)} \\
& =\frac{a+b-c}{2} \\
& \therefore a^{2}+b^{2}=c^{2}
\end{aligned}
$$

73. B

Sol: $\quad A D=\frac{3 \sqrt{5}}{2}$

$$
\begin{aligned}
& \mathrm{CE}=2 \sqrt{5} \\
& \ln \triangle \mathrm{BDA}^{2} \\
& \mathrm{BD}^{2}+\mathrm{BA}^{2}=\mathrm{AD}^{2} \\
& \frac{\mathrm{BC}^{2}}{4}+\mathrm{BA}^{2}=\frac{45}{4} \\
& \mathrm{BC}^{2}+4 \mathrm{BA}^{2}=45 \ldots .1 \\
& \ln \triangle \mathrm{CBE} \\
& (\mathrm{BC})^{2}+(\mathrm{BE})^{2}=(\mathrm{CE})^{2} \\
& \mathrm{BC}^{2}+\frac{\mathrm{AB}^{2}}{4}=20 \\
& 4 \mathrm{BC}^{2}+\mathrm{AB}^{2}=80 \ldots .2 \\
& \text { Solving eq. No. } 1 \& 2^{A^{2}}=\frac{20}{3}, \mathrm{BC}^{2}=\frac{55}{3} \\
& \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2} \\
& \mathrm{AC}=5
\end{aligned}
$$

74. B

Sol:

$\frac{\mathrm{h}}{\mathrm{r}}=\sin 60^{\circ}$
$h=\frac{\sqrt{3}}{2} r$
Length of common chord $=2 h=\sqrt{3} r$
$\frac{\text { Length of common chord }}{\text { radius of circle }}=\frac{\sqrt{3} r}{r}=\frac{\sqrt{3}}{1}$

CHEMISTRY

75. C

Sol: As gold has maximum malleability
76. C

Sol: When carbon dioxide is passed through lime water which is a diluted solution of $\mathrm{Ca}(\mathrm{OH})_{2}$, it turns milky due to the formation of calcium carbonate which is CaCO_{3}
77. B

Sol: $\quad \mathrm{B}$ is the correct answer $=\mathrm{Na}>\mathrm{Mg}>\mathrm{Al}>\mathrm{Si}>\mathrm{Cl}$. Along the period, metallic character decreases, all elements belong to period-3. This question is directly from class tenth NCERT exampler problems.
78. C

Sol: The correct ans is C because gases can be liquified at low temperatures and high pressure. Non ideal gases are only liquefiable.
84. C

Sol: Bismuth alone does not exist with allotropy. Whereas all the elements in $15^{\text {th }}$ group of periodic table show allotropy due to its variable oxidation state. Bismuth due to its inert pair effect does not exist variable oxidation state.
85. D

Sol: Tea contains tannic acid, which becomes bitterer as the tea is steeped. Depending on the type, tea a pH ranging from 4.0 to
6.0. Ginger tea and green tea are lowest in acidity.
86. D

Sol: Due to maximum electronegativity.

PHYSICS

87. A

Sol: $\quad \sqrt{\frac{2 h}{g}}=\mathrm{T} \therefore \sqrt{\frac{2 \Delta h}{g}}=\frac{\mathrm{T}}{3}$
$\Delta h=h / 9$
\therefore height $\frac{8 \mathrm{~h}}{9}$ from ground.
88. C

Sol: $K=\frac{p^{2}}{2 m}$
$\frac{p_{1}^{2}}{p_{2}^{2}}=\frac{m_{1} k_{1}}{m_{2} k_{2}}=\frac{16}{1}$
89. B

Sol: \quad Power $=\frac{d m}{d t} g h$
$=75 \mathrm{kw}$
90. B

Sol: $\quad \Delta \mathrm{p}=\mathrm{F} \Delta \mathrm{t}=$ area of graph $=0$
91. D

Sol: $R=\rho \frac{L}{A}=\frac{\rho L^{2}}{\text { volume }}$
$\mathrm{L} \rightarrow 2 \mathrm{~L}, \mathrm{R} \rightarrow 4 \mathrm{R}$
Increase is 300\%
92. C

Sol: $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$

93. C

Sol: $B_{\text {coil }}=\frac{\mu_{0} N I}{2 R}$
$\frac{B_{1}}{B_{2}}=\frac{\frac{1}{d_{1}}}{\frac{1}{d_{2}}}=\frac{d_{2}}{d_{1}}=2: 1$
94. A

Sol: $\quad \lambda_{\text {glass }}=\frac{\lambda_{\text {vaccum }}}{\mu_{\text {glass }}}=\frac{5460 \mathrm{~A}^{\circ}}{1.5}=3640 \mathrm{~A}^{\circ}$
95. A

Sol: Equivalent circuit is $12 \mathrm{~V}=0.25(6+\mathrm{R})$ ($\mathrm{R}=42 \Omega$)

96. D

Sol: Slope of graph = velocity
97. D

Sol: N does not pass through centre and produce torque.

98. A

Sol: Thermal radiations transfer energy from hot to cold body in vacuum.
99. B

Sol: $\quad d=v \Delta t=350 m$

100.

Sol: $\quad T=2 \pi \sqrt{\frac{L}{g}}$
As water leaks out centre of mass falls initially and finally again returns to centre. L increases first and then decreases T. Increases first and then decreases.

