## Rajasthan

## NTSE-2017 (Stage-I) SOLUTIONS

## SAT

| 1. | (2) | $a = -8 \text{ m/s}^2$<br>v = u + at<br>o = u - 8 × 3<br>u = 24 m/sec |
|----|-----|-----------------------------------------------------------------------|
|    |     | $s = ut + \frac{1}{2}at^2$                                            |
|    |     | $s = \frac{24 \times 3 - \frac{1}{2} \times 8 \times 9}{s = 72 - 36}$ |
|    |     | $s = 72 - 36^{2}$                                                     |
|    |     | s = 36 m                                                              |
| 2. | (1) |                                                                       |

Pi = Pt  

$$\frac{10}{1000} \times 100 + 10 = \left(\frac{10}{1000} + 1\right) V$$

$$t = (1.01) V$$

$$v \simeq 1 \text{ m/sec.}$$

1 unit = 1 kwh = 
$$3.6 \times 10^6 \text{ J}$$
  
00 unit =  $200 \times 3.6 \times 10^6 \text{ J}$   
=  $72 \times 10^7 \text{ J}$   
=  $7.2 \times 10^8 \text{ J}$ 

**5.** (1)

Speed of sound will be maximum in solids. So speed is maximum in glass.

**6.** (1)

$$w = \frac{wg}{6}$$
$$= 15 \times \frac{9.8}{6}$$
$$w = 24.5 \text{ N}$$

**7.** (4)

w = 
$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2$$
  
u =  $18 \times \frac{5}{18} = 5m/s$   
v =  $72 \times \frac{5}{18} = 20m/s$   
w =  $\frac{1}{2} \times 2(400 - 25) = 375J$ 

**8.** (2)

Between the principle focus & centre of curvature.

- 9. (3) For maximum angle of Refraction, speed is maximum.
- 10. (3) Tyndall effect.
- 11. (3) By fleming's left hand Rule.
- **12.** (3)

Req = 
$$\frac{6}{3} = 2\Omega$$
  
i =  $\frac{15}{2} = 7.5 \text{ A}$   
i =  $\frac{i}{3} = \frac{7.5}{3} = 2.5 \text{ A}$ 

**14.** (3)

$$\frac{W_B}{W_{A+W_B}} \times 100 = \frac{30}{250} \times 100 = 12\%$$

- 15. (1) Cheese is an example of Gel.
- 16. (2) Fractional Distillation.
- **17.** (4) Mg<sub>12</sub> 2, 8, 2

(3)

18.

- $\frac{4}{16} \times 6.02 \times 10^{23} = 1.505 \times 10^{23}$
- **19.** (4) No of  $e^-$  in Al<sup>3+</sup> and F<sup>-</sup> is same Al<sup>3+</sup>  $\rightarrow$  13 - 3 = 10 F<sup>-</sup>  $\rightarrow$  9 + 1 = 10
- **20.** (4) 10.2 pH > 7 for basic solution

| 21. | (3) Ay does not react with $O_2$ at high temperature.                                                                                                    |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 22. | (2)<br>Aqua – Regia<br>2Au + 3HNO₃ + 11HCI —→ 2HAucl₄ + 3NOCI + 6H₂O                                                                                     |  |  |
| 23. | (3)<br>Potassium.                                                                                                                                        |  |  |
| 24. | (3)<br>$CH_3 - CH_2 - OH \xrightarrow{Hot, Conc.} H_2 = CH_2 + H_2O$                                                                                     |  |  |
| 25. | (1)<br>Both Na and K have same electronic configuration of valance shell.                                                                                |  |  |
| 26. | (3)<br>Methanol is added to ethanol to make it unfit for drinking.                                                                                       |  |  |
| 27. | (4)<br>Besides nucleus, mitochordria and chloroplast have DNA.                                                                                           |  |  |
| 28. | (3)<br>Bryophytes are considered as Amphibians of plant kingdom.                                                                                         |  |  |
| 29. | (4)<br>Sclerenchyma tissue provide mechanical support to plant.                                                                                          |  |  |
| 30. | (4)<br>Cytokinin induces cell division.                                                                                                                  |  |  |
| 31. | (3)<br>In PTC undifferentiated mass of cell are called callus.                                                                                           |  |  |
| 32. | (1)<br>Amrita devi Vishnoi was involved in chipko movement in Khejarli in Marwar, Rajasthan in 1730 it was<br>related to plant conservation movement.    |  |  |
| 33. | (1)<br>Ultraviolet radiations causes more harm to ozone layer.                                                                                           |  |  |
| 34. | (3)<br>Lysosomes are called suicidal bags.                                                                                                               |  |  |
| 35. | (4)<br>Stratified squamous epithelium present on lining of oesophagus.                                                                                   |  |  |
| 36. | (3)<br>Only Ascaris belong to Aschelminthes with triploblastic and pseudocoelomate, while others are platyhelminthes with triploblastic and acoelomates. |  |  |
| 37. | (4)<br>Echidna platypus is only oviparous mammal.                                                                                                        |  |  |
| 38. | (2)<br>Normal blood pressure in Human is 120/80 mm of Hg.                                                                                                |  |  |
| 39. | (1)<br>Brain and spinal form central Nervous system.                                                                                                     |  |  |
| 40. | (4)<br>Raja Saurus is an example of dinosaur genus of carnivorous Abelisaurian theropod with an unusual head<br>crest.                                   |  |  |

 $\begin{array}{ll} \textbf{41.} & (2) \\ & x+y+3x^{1/3}y^{1/3} \ (x^{1/3}+y^{1/3}) \\ & \Rightarrow (x^{1/3}+y^{1/3})^3 \\ & \text{So, cube root is} \ (x^{1/3}+y^{1/3}) \end{array}$ 

42. (2)  $0.\overline{23} + 0.2\overline{3}$  $\Rightarrow 0.23232323 \dots + 0.2333333$ 

 $\Rightarrow 0.465656565 \dots$  $\Rightarrow 0.4\overline{65}$ 

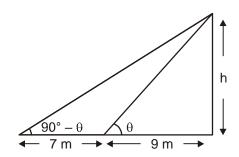
**43.** (1)

$$x = -\sqrt{2}$$
  
so K(-\sqrt{2})<sup>2</sup> - (\sqrt{2})(-\sqrt{2}) + 1 = 0  
2K + 2 + 1 = 0  
2K + 3 = 0  
K = -3/2

**44.** (3)

$$3x + 2y = 13 xy$$
  
 $4x - 5y = 2 xy$ 

for  
for  


$$y = 0 \Rightarrow x = 0$$
  
 $x = \frac{1}{2} \Rightarrow y = \frac{1}{3}$  point are (0, 0) and  $(\frac{1}{2}, \frac{1}{3})$ 

45.

(1)

 $\Rightarrow$ 

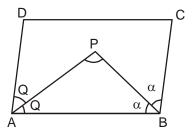
$$\tan \theta = \frac{h}{9} \qquad \tan(90^\circ - \theta) = \frac{h}{16}$$
$$\tan \theta = \frac{h}{9} - (1) \qquad \cot \theta = \frac{h}{16} - (11)$$
$$(1) \times (11)$$
$$\frac{h^2}{16 \times 9} = 1$$
$$h^2 = 16 \times 9$$
$$h = 4 \times 3 = 12$$



**46.** (4)

$$\sin \theta = p$$
  
 $\cos \theta = q$ 

$$\Rightarrow \frac{p-2p^3}{2q^3-q}$$


$$\Rightarrow \qquad \frac{p(1-2p^2)}{q(2q^2-1)} = \frac{\sin\theta(1-2\sin^2\theta)}{\cos\theta(2\cos^2\theta-1)}$$
$$= \tan\theta$$

So,  

$$2Q + 2\alpha = 180^{\circ}$$

$$Q + \alpha = 90^{\circ}$$

$$\angle APB = 90^{\circ}$$



 $\angle OAB' = \angle OBA = y^{\circ}$  $\angle AOB = 2 \angle ACB = 2x^{\circ}$  $2x + 2y = 180^{\circ}$  $x + y = 90^{\circ}$ 

 $\Delta CBA \sim DBC$ 

 $=\frac{13}{BC}$ 

 $BC^2 = 13 \times 9$ 

 $\frac{AC}{AD} = \frac{BC}{DC} = \frac{AB}{AC}$ 

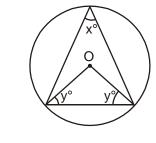
= 13

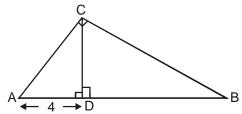
 $\frac{1}{4} = \frac{1}{AC}$  $AC^2 = 13 \times 4$ 

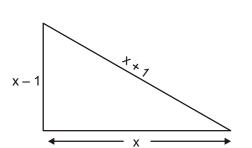
 $\frac{\mathsf{BC}^2}{\mathsf{AC}^2} = \frac{13 \times 9}{13 \times 4} = \frac{3}{2}$ 

 $=\frac{3}{2}$ 

x = 4cm


 $\frac{BC}{BD} = \frac{AB}{BC} = \frac{AC}{DC}$ 


BC 9


 $\frac{AC}{4}$ 

 $\frac{\mathsf{BC}}{\mathsf{AC}}$ 

 $\begin{array}{l} x^2 + (x-1)^2 \,= x^2 + 1 \,+\, 2x \\ x^2 + x^2 + 1 - 2x \,= x^2 + 1 \,+\, 2x \\ x^2 - 4x \,= 0 \end{array}$ 

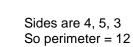






**49.** (1)

So

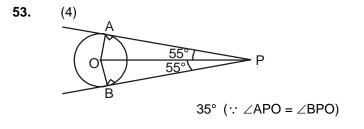

So Similarly

 $\Rightarrow$ 

(3)

(4)

50.




## 51.

52.

 $2x^{2} + 3kx + 8 = 0$ Roots are equal so  $b^{2} - 4ac = 0$   $\Rightarrow \qquad 9k^{2} - 4(2)(8) = 0$   $\Rightarrow \qquad 9k^{2} = 64$   $\Rightarrow \qquad k^{2} = \frac{64}{9}$   $\Rightarrow \qquad k = \pm 8/3$ (1)

so, a + b + c = x - y + y - 2 + z - x = 0 $a^3 + b^3 + c^3 = 3(x - y) (y - z)(z - x)$ 



54. (4)  
Total cases = {TT, TH, HT, HH}  
So required probability = 
$$\frac{3}{4}$$

55. (1) tan 25° tan 35° tan 45° tan 55° tan 65° tan 25° tan 35° tan 45° cot 35° tan 25° {as tan  $(90^\circ - \theta) = \cot \theta$ } = 1

$$\frac{n}{2}[a+\ell] = 400$$

$$\Rightarrow \qquad \frac{n}{2}[5+45] = 400$$

$$\Rightarrow \qquad \frac{n}{2}[50] = 400$$

$$n = 16$$
so
$$a + (n-1)d = 45$$

$$\Rightarrow \qquad 5 + (15)d = 45$$

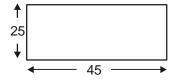
$$\Rightarrow \qquad 15d = 40$$

$$d = \frac{8}{3}$$

$$T_4 = a + (3)d = 13$$

$$\Rightarrow \frac{1}{4}(\pi(23)^2 - \pi(12)^2)$$

$$\Rightarrow \frac{1}{4}(\pi(23 + 12)(23 - 12))$$


$$\Rightarrow \frac{1}{4}\left[\frac{22}{7} \times 35 \times 11\right]$$

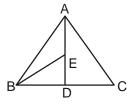
$$\Rightarrow \frac{1}{4}[110 \times 11]$$

$$\Rightarrow \frac{605}{2} = 302.5 \text{ M.}$$

(4)

$$\frac{4}{3} \times \pi \times 6 \times 6 \times 6 = \pi \times 3 \times 3 \times h$$
$$32 = h$$




Mode = 3 median - 2 Mean  

$$5 = 3(3) - 2(x)$$
  
 $2x = 4$   
 $x = 2$ 

60.

(3)  
Let area of ABC = x  
So, area of ABD = 
$$\frac{x}{2}$$
  
So, area of BED =  $\frac{x}{4}$ 



