NTSE STAGE - I (DELHI STATE)
 05 - A (2018-19)
 (For Class - X)
 MENTAL ABI LI TY TEST (MAT)
 HINTS \& SOLUTIONS

1. 4
2. $\mathrm{x}+\frac{25}{\mathrm{x}}=10 \Rightarrow \mathrm{x}^{2}-10 \mathrm{x}+25=0 \Rightarrow(\mathrm{x}-5)^{2}=0 \Rightarrow \mathrm{x}=5$
$\mathrm{x}^{2}+\frac{50}{\mathrm{x}^{2}}=25+\frac{50}{25}=25+2=27$
3. 1
4. $x+y=3, x^{2}+y^{2}=15$
$(x-y)^{2}=?, \quad\left(x^{2}+y^{2}+2 x y\right)=9 \quad \Rightarrow \quad 15+2 x y=9$
$(x-y)^{2}=x^{2}+y^{2}-2 x y=15+0=21 \Rightarrow \quad x y=-3$
$(x-y)^{2}=x^{2}+y^{2}-2 x y=15+6=21$
5. 2
6. $\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=K \Rightarrow a=3 K, b=5 K, c=7 K$

$$
\therefore \quad \frac{a+b+c}{b}=\frac{3 K+5 K+7 K}{5 K}=3
$$

4. 3
5. $x+y=25, \quad x^{2}+y^{2}=425$
$\Rightarrow \quad x^{2}+y^{2}+2 x y=625$
$\Rightarrow \quad 425+2 x y=625 \Rightarrow x y=100$
6. 1
7. $0.64 \div \mathrm{a}^{2}=64$
$\Rightarrow \frac{0.64}{a^{2}}=64 \Rightarrow a^{2}=\frac{1}{100} \Rightarrow a=\frac{1}{10}=0.1$
8. 2
9. Dividend $=$ divisor \times quotient + remainder

Divisor $=30 \times \mathrm{q}$
Divisor $=4 \times r$
$\because q=20 \Rightarrow$ Divisor $\Rightarrow 600 \&$ remainder $=\frac{600}{4}=150$
\therefore Dividend $=600 \times 20+150=12,150$
7. 4
7. $3^{a-2 b}=27 \Rightarrow 3^{a-2 b}=3^{3} \Rightarrow a-2 b=3$
$9^{a+b}=3 \Rightarrow 3^{2 a+2 b}=3^{1} \Rightarrow 2 a+2 b=1$
by equation (1) and (2)

$$
\begin{array}{rlrl}
& 3 a & =4 & \Rightarrow a=4 / 3, b=-5 / 6 \tag{2}\\
\therefore & -a / b & =-\left(\frac{4 / 3}{-5 / 6}\right)=8 / 5
\end{array}
$$

8. 4
9. $\sqrt{17+x \sqrt{11}}=\sqrt{11+6+2 \cdot \sqrt{11}} \cdot \sqrt{6}$

$$
\Rightarrow x=2 \sqrt{6}
$$

$$
\therefore \mathrm{x}^{2}=24
$$

9. 1
10. $\sqrt{0.02 \times 0.2 \times a}=0.2 \times 0.2 \times \sqrt{b}$

$$
\Rightarrow 0.02 \times 0.2 \times a=0.2 \times 0.2 \times 0.2 \times 0.2 \times b
$$

$$
\Rightarrow \frac{\mathrm{a}}{\mathrm{~b}}=\frac{0.2 \times 0.2 \times 0.2}{0.02}=0.4
$$

10. 1
11. $\alpha=7-\sqrt{3}, \quad \beta=7+\sqrt{3}$

$$
\alpha+\beta=14, \quad \alpha \beta=46
$$

$$
\therefore \quad x^{2}-14 x+46=0
$$

11. 2
12. $Q=3 R=2(P+R)$
$Q=2 P+2 R$
$3 R=2 P+2 R$
$R=2 P$
$\therefore Q=2 P+4 P=6 P$
$\therefore P+6 P+2 P=180^{\circ} \Rightarrow 9 P=180^{\circ} \Rightarrow P=20^{\circ}$
$\therefore Q=6 \times 20=120^{\circ}$
13. 2
14. $\frac{p}{q}=\frac{x+3}{x-3}, p=(x+3) K, q=(x-3) K$

$$
\frac{p^{2}-q^{2}}{p^{2}+q^{2}}=\frac{[(x+3) K]^{2}-[(x-3) K]^{2}}{[(x+3) K]^{2}+[(x-3) K]^{2}}
$$

$$
=\frac{(x+3)^{2}-(x-3)^{2}}{(x+3)^{2}+(x-3)^{2}}
$$

$$
=\frac{(x+3+x-3)(x+3-x+3)}{2\left(x^{2}+9\right)}
$$

$$
=\frac{2 x \times 6}{2\left(x^{2}+9\right)}
$$

$$
=\frac{6 x}{x^{2}+9}
$$

13. 1
14. Perimeter of square $=4 a=2(I+b)$

$$
I=24=2 b \Rightarrow b=12
$$

$\therefore \quad 4 a=72 \Rightarrow a=18$
$\therefore \quad$ Area of square $=18^{2}=324$
14. 1
14. $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=\frac{2}{3}=\frac{1}{4} \times \frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}} \Rightarrow \frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}=\frac{8}{3}$
15. 3
15. $2^{x}=8^{y-1} \Rightarrow x=3 y-3$
$9^{y}=3^{x-6} \Rightarrow 2 y=x-6$
by (1) \& (2)
$x=24, y=9$
$\therefore x+y=33$
16. 1
16. $x-y:(x+y): x y=1: 7: 24$

$$
\begin{aligned}
\frac{x-y}{x+y}= & \frac{1}{7} \Rightarrow 7 x-7 y=x+y \\
& =6 x=8 y \\
& =x=\frac{4}{3} y \\
\frac{x-y}{x y}= & \frac{\frac{4}{3} y-y}{\frac{4}{3} y \cdot y}=\frac{1 y}{4 y^{2}}=\frac{1}{4 y}=\frac{1}{24} \Rightarrow y=6 \\
\therefore \quad & x=\frac{4}{3} \times 6=8 \\
\therefore \quad & x y=48
\end{aligned}
$$

17. 1
18. $6,7,7,7,9,9,14,15$
mode $=7$
range $=15-6=9$
median $=8$
\therefore mean $=\frac{7+9+8}{3}=8$
19. 4
20. Let initial income be x
\therefore initial expenditure $=0.8 \mathrm{x}$
New expenditure $=1.375(0.8 x)$

$$
=1.1 x
$$

New income $=\frac{7 x}{6}$
\therefore Saving $=\frac{7 x}{6}-\frac{11 x}{10}$

$$
=\frac{2 x}{30}=\frac{x}{15}
$$

\therefore present percent saving $=\frac{\frac{x}{15}}{\frac{7 x}{6}} \times 100=5 \frac{5}{7} \%$
19. 3
19. Let the cost of 1 chair be ' c ' and the cost of 1 table be ' t '
$5 c+3 t=3110$
$\mathrm{c}=\mathrm{t}-210$
So, we get,
$5 t-1050+3 t=3110 \Rightarrow 8 t=4160 \Rightarrow t=520$
$\Rightarrow c=310$
\therefore Rs. 1660
20. 2
20. $5=a+\frac{1}{1+\frac{1}{6+\frac{1}{2}}}$
$\Rightarrow 5=a+\frac{1}{1+\frac{2}{13}}$
$\Rightarrow 5=a+\frac{13}{15}$
$\Rightarrow \mathrm{a}=5-\frac{13}{15}$
$\Rightarrow \mathrm{a}=\frac{62}{15}$
21. 4
21. Let number be x
$\frac{7}{8} x=\frac{5}{7} x+5$
$\frac{7 x}{8}-\frac{5 x}{7}=5$
$\frac{49 x-40 x}{56}=5 \Rightarrow x=\frac{5 \times 56}{9}$
$\Rightarrow 9 x=9 \times 5 \times \frac{56}{9}=5 \times 56=280$
22. 3
22. $\frac{1}{3} \pi(6)^{2} \times 24=\frac{4}{3} \times \pi \times \mathrm{R}^{3}$
$\Rightarrow R=6$
$\therefore \mathrm{TSA}=4 \pi \mathrm{R}^{2}=4 \times \pi \times 36=144 \pi \mathrm{sq} \mathrm{cm}$
23. 4
23. $2\left(\frac{1}{P}+\frac{1}{Q}+\frac{1}{R}\right)=\frac{1}{10}+\frac{1}{15}+\frac{1}{20}$
$\frac{1}{P}+\frac{1}{Q}+\frac{1}{R}=\frac{6+4+3}{60 \times 2}=\frac{13}{60 \times 2}$
$\frac{1}{P}+\frac{1}{Q}+\frac{1}{R}-\left(\frac{1}{P}+\frac{1}{Q}\right)=\frac{13}{120}-\frac{1}{10}$
$\Rightarrow \frac{1}{R}=\frac{13-12}{120}=\frac{1}{120}$
R will complete in 120 days
24. 3
24. $3^{1 / 2}, 2^{1 / 3}, 2^{1 / 2}, 4^{1 / 3}$
$3^{3 / 6}, 2^{2 / 6}, 2^{3 / 6}, 4^{2 / 6}$
$\Rightarrow \quad\left(3^{3}\right)^{1 / 6},\left(2^{2}\right)^{1 / 6},\left(2^{3}\right)^{1 / 6},\left(4^{2}\right)^{1 / 6}$
$\Rightarrow \quad(27)^{1 / 6},(4)^{1 / 6},(8)^{1 / 6},(16)^{1 / 6}$
25. 4
25. Putting symbols in option (4)
$8 \times 8+8 \div 8-8=64+1-8=57$
26. 4
26. Out of 60 litres 12 litres is taken out
i.e. $\frac{12}{60} \times 100=20 \%$
milk remained after two replacement

$$
=60 \times \frac{80}{100} \times \frac{80}{100}=38.4 \text { litres }
$$

27. 4
28. Except option (4) all follows.
$\mathrm{x}: 3 \mathrm{x}+1$
29. 3
30. Between A and $B \rightarrow 30-20-1=09$ total $=20+9+16=45$
31. 1
32. $\mathrm{n}=\frac{15}{3}=5$

$$
\begin{aligned}
\text { one face painted } & =(n-2)^{2} \times 6 \\
& =3^{2} \times 6=54
\end{aligned}
$$

30. 2
31. Let son's present age $\rightarrow s$
$\mathrm{S}=48-3 \mathrm{~S}$
$\Rightarrow S=12$
Son is 12 years now, so 4 years ago he would be 8 .
32. 2
33. Series follows

$$
1 \times 2, \quad 3 \times 4, \quad 5 \times 6, \underbrace{7 \times 8}_{56}, \quad 9 \times 10,11 \times 12
$$

32. 4
33. 10

34. 4

35. 4
36. 109

37. 4
38. In numerator $+2,+3,+4,+5$

In denominator +4, +6, +8, +10
$\Rightarrow \frac{2}{4}, \frac{4}{7}, \frac{7}{3}, \frac{11}{21}, \frac{16}{31}$
36. 3
36. Initially 12 dozen in basket $=12 \times 12=144$ apples

2 dozen added later $=144+(12 \times 2)=168$
10 apples got spoiled $=168-10=158$
In each basket $=\frac{158}{2}=79$
37. 2
37. To coincide between 8 and 9 O'clock

Minute hand require gain of 40 min
55 min gain occur in 60 min
1 min gain occur in $\frac{60}{55}$ min
40 min gain occur in $\frac{60}{55} \times 40=\frac{480}{11}=43 \frac{7}{11} \mathrm{~min}$
hands will coincide at $43 \frac{7}{11} \mathrm{~min}$ past 8 .
38. 4
38. From option (4)

Putting $A=9, B=13, C=11$
$9+9+12=30$
$13+10+7=30$
$8+11+11=30$
39. 3
39. $\frac{7^{n+3}+7 \times 2 \times 7^{n+4}}{7^{n+3}}$

$$
=\frac{7^{n+3}\left(1+7^{2} \times 2\right)}{7^{n+3}}=99
$$

40. 1
41. $\tan x=5-\sqrt{3}$;
$22 \tan (90-x)=22 \cot x=\frac{22}{5-\sqrt{3}} \times \frac{5+\sqrt{3}}{5-\sqrt{3}}=5+\sqrt{3}$
42. 4
43. $a=\frac{1}{2-\sqrt{3}}, \quad b=\frac{1}{2+\sqrt{3}} \quad \Rightarrow \quad a b=1 \Rightarrow b=\frac{1}{a}$

$$
7 a^{2}+11 a b-7 b^{2}
$$

$$
7 a^{2}-7 b^{2}+11 \times 1
$$

$$
=7\left(a^{2}-\frac{1}{a^{2}}\right)+11
$$

$$
=7\left(a+\frac{1}{a}\right)\left(a-\frac{1}{a}\right)+11
$$

$$
=7 \times 4 \times(+2 \sqrt{3})+11
$$

$$
=56 \sqrt{3}+11
$$

42. 1
43. Tank filled in one minute
$\frac{1}{\mathrm{~A}}+\frac{1}{\mathrm{~B}}-\frac{1}{\mathrm{C}}$
$\frac{1}{12}+\frac{1}{15}-\frac{1}{10}$
$\frac{5+4-6}{60}=\frac{3}{60}=\frac{1}{20}$
Tank will be filled in 20 minutes
44. 1
45. $\mathrm{A}=\mathrm{P}+\frac{3 \times \mathrm{T} \times \mathrm{P}}{100}=800$
$P+\frac{5 \times T \times P}{100}=1000$
by $(1) \&(2) \frac{2 P T}{100}=200$
PT $=10,000$
$\mathrm{P}=500$,
$\therefore \mathrm{T}=20$
46. 1
47. $x^{2}-2 x-1=0$
$a+b=2$
$a b=-1$
$\therefore a^{2} b+a b^{2}=a b(a+b)=-1(2)=-2$
48. 3
49. $1,00,000 \times \frac{60}{100} \times \frac{20}{100}=12,000$
50. 1
51. $1,00,000 \times \frac{5}{100} \times \frac{60}{100}=3,000$
52. 3
53. $1,00,000 \times \frac{15}{100} \times \frac{60}{100}=9,000$
54. 2
55. $\frac{1,00,000 \times \frac{20}{100} \times \frac{60}{100}}{1,00,000 \times \frac{5}{100} \times \frac{20}{100}}=\frac{12}{1}$
56. 3
57. $1,00,000 \times \frac{20}{100} \times \frac{20}{100}-1,00,000 \times \frac{5}{100} \times \frac{20}{100}=3,000$
58. 2
59. $(6-1)!=5!=120$
60. Incorrect Question
61. The alphabet R should not appear in the sequence. Then the next two letters will be D W.
62. 3
63. $R>P>S>Q>T$
64. 3
65. $7 \mathrm{M} 4 \mathrm{P} \% \mathrm{JVIK} 3$ @EW2 Q © 6 TA * 8 Z 15 \$FU\# 9 H N
66. No option correct.
67. 7 M 4 P \% JVIK 3 @ EW 2 Q © 6 TA * 8 Z 15 \$FU\# 9 HN No such consonant is there in the given sequence which is immediately preceded by symbol and immediately followed by two numbers.
68. 2
69. 7 M 4 PJVIK3EW2Q6TA8Z15FU9HN
70. 2
71. The following table can be concluded:

Day	Performer	Item performed
Monday	D	Speech
Tuesday	A	Monologue
Wednesday	F	Dance
Thursday	B	Play
Friday	G	Mimicry
Saturday	C	Debate
Sunday	E	Music

F performs Dance
57. 4
57. D performs speech on Monday.
58. 1
58. A performs on Tuesday
59. 4
59. G performs of Friday.
60. 4
60. C performs Debate.
61. 3
61. Only educated non working female $\rightarrow 10$

Non-working female $\rightarrow 7$
$\Rightarrow(10+7)=17$
62. 1
62. There are no women who are non-educated \& non working.
63. 2
63. Area which occupy square + rectangle only
i.e. 40
64. 2
64.

65. 2
65. $+3,+3,+3,+3$, series same as serial number (B)
66. 1
66. $-4,-4,-4,-4$ series same as series number (A)
67. Incorrect Question
67. The code in the question should be QLFIMZO instead of QLFIMZQ. In that case the answer is C (Option 3).
68. 2
68.

69. 1
69.

70. 4
70.

71. No option correct
71. If \wedge means \div and \vee means \times, then the answer will be 30 (Option 4)
72. 4
72. BHAGAT, BHAGIRATH, BHAGWAN, BHAGWAT
73. 1
73.

74. 3
74. $\mathrm{Z} \rightarrow 26 \times 2 \rightarrow 52$

ACT $\rightarrow 1+3+20 \rightarrow 24 \times 2 \rightarrow 48$
BAT $\rightarrow 2+1+20 \rightarrow 23 \times 2 \rightarrow 46$
75. 3
75. $20 \times(3)^{2} \rightarrow 180,4 \times(5)^{2} \rightarrow 100$. So, $7 \times(7)^{2} \rightarrow 343$
76. 4
76. 2 opposite to 6

3 opposite to 4
1 opposite to 5
77. No option correct.
77.

The lines are AL, JK, CI, EG, MF, BD, AM, KG, LF, CL, KL, CF, GF, BJ \& DE. So total 15 lines.
However, if CF \& CL are not straight lines, then the number of lines will be 17.
78. 1
78. As per observation.
79. 3
79. As per observation.
80. 3
80. KILOMETER \rightarrow LHMNNDUDS

Then after arranged alphabetical order.
DDHLMNNSU. So, fifth from left end is \underline{M}.
81. No option correct
81. The correct answer is $2^{\text {nd }}$ as in $2^{\text {nd }}$ move they are together however, if we consider the symbols in the same position as in given figure, then the correct answer will be $6^{\text {th }}$. (Option 2). If they count each move of white star and each move of black star as different moves, then total moves will be $4^{\text {th }}$ (Option 1) .
82. 2
82. As per observation
83. 1
83. As per observation
84. 2
84. 20 cubes in upper figure.

28 cubes in middle figure
20 cubes in lower figure
= 68 cubes total
85. 2
85. $8^{2}+7^{2}+6^{2}+5^{2}+4^{2}+3^{2}+2^{2}+1^{2}$
$64+49+36+25+16+9+4+1=204$
86. No option correct
86. None of the given dices can be formed. In (2) and (4), no white face is visible, which is not possible. \ln (1) and (3), one new face is shown which is different from the faces shown in the given net.
87. 4
87. As per observation
88. 3
88.

89. No option correct
89. Option 2 is closest but is not completely correct.
90. 4
90.

ABCD, ABOP, ABNM, CDPO, CDMN, EFGH, EFNO, EFMD, GHNO, GHMP, IJMO, MOLK, INPL, NJKP
91. 2
91.

AGYE, GBFY, FYHD, HCEY, ABCD, GFHE, KMYP, MLOY, OJNY, PYNI, KLIJ, MONP, QUVX, RWYU, TXYW, SUYX, QRTS
92. No option correct
92. The correct answer should be
 which is not there in the options.
93. 4
93. One line remove from the outer figure for the bottom.
94. No option correct
94. The correct answer should be

which is not there in the options.
95. 3
95. As per observation
96. No option correct
96. Option 2 and 4 are same. But the actual answer should be
97. 4

97. As per observation
98. 1
98. As per observation
99. 2
99. As per observation
100. 4
100. As per observation

NTSE STAGE - I (DELHI STATE)
 05-A (2018-19)
 (For Class - X)
 SCHOLASTIC APTITUDE TEST

 HI NTS \& SOLUTI ONS

 HI NTS \& SOLUTI ONS}
101. 3
101. $\mathrm{S}=\frac{1}{2} \mathrm{a}\left(\mathrm{t}_{2}^{2}-\mathrm{t}_{1}^{2}\right)$
$x_{1}=\frac{1}{2} a\left(10^{2}-0^{2}\right) ; \quad x_{2}=\frac{1}{2} a\left(20^{2}-10^{2}\right) ; \quad x_{3}=\frac{1}{2} a\left(30^{2}-20^{2}\right)$
So, $x_{1}: x_{2}: x_{3}=1: 3: 5$
102. 1
102. $M_{1} V_{1}=M_{2} V_{2}$
$m \times 16=2 m \times V$
$\Rightarrow \quad \mathrm{V}=8 \mathrm{~m} / \mathrm{s}$
K.E. $=\frac{1}{2} \times m \times 16^{2}+\frac{1}{2} \times 2 m \times 8^{2}=192 \mathrm{~mJ}$
103. 2
103. $\mu_{1} \sin x=\mu_{2} \sin 45^{\circ}$
$\operatorname{Sin} x=\frac{\sqrt{3}}{\sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{\sqrt{3}}{2}$
$\Rightarrow \quad x=60^{\circ}$
104. 4
104. $P=\frac{1}{f} \quad \Rightarrow \quad f=\frac{1}{-4} m=-0.25 m$
105. 2
105. Using Maxwell's right hand thumb rule.
106. 4
106. Let $i_{1}=i ; i_{2}=\frac{3}{2} i$

$$
\frac{P_{2}-P_{1}}{P_{1}} \times 100 \%=\frac{i_{2}^{2}-i_{1}^{2}}{i_{1}^{2}} \times 100 \%
$$

$\left\{\left(\frac{i_{2}}{i_{1}}\right)^{2}-1\right\}=\frac{5}{4} \times 100=125 \%$
107. 3
107. As slope of $v-t$ gives acceleration and slope is positive as well as increasing.
108. 3
108. Astigmatism is corrected by using cylindrical lens.
109. 2
109. Distance between consecutive compression and rarefaction is half of wavelength.
110. No option
110. $\frac{5 \lambda}{2}=20 \Rightarrow \lambda=8 \mathrm{~cm}$
$v=\frac{v}{\lambda}=\frac{320}{8} \times 100=4000 \mathrm{~Hz}$.
111. 4
111. $\mathrm{H}=\mathrm{mC} \Delta \mathrm{T}$
$\mathrm{x}=15 \times 1 \times(24-20)=60 \mathrm{cal}$
112. 2
112. In a hydro-Power Plant potential energy possessed by the stored water is converted into electricity.
113. 2
113. Weight $=5 \times \frac{G \times 2 M}{9 R^{2}}=\frac{10}{9} \times 9.8$

$$
=10.88 \mathrm{~N}
$$

Where M \& R are mass of earth and radius of earth.
114. 4
114. An olfactory indicator is a substance whose odour varies depending whether it is mixed with an acidic or basic solution
115. 3
115.

116. 2
116.

Methyl orange	Acidic	Base
	Red	Yellow

117. 3
118. $\underset{\text { W.B }}{\mathrm{NH}_{4} \mathrm{OH}}+\underset{\text { s.A }}{\mathrm{HCl}} \longrightarrow \underset{\text { satt }}{\mathrm{NH}_{4} \mathrm{Cl}}+\mathrm{H}_{2} \mathrm{O}$
119. 3
120. Order of electricity
$\mathrm{Ag}>\mathrm{Cu}>\mathrm{Au}>\mathrm{Al}>\mathrm{W}>\mathrm{Hg}$
Hg has very high resistance
121. 2
122. Gold \& silver both are malleable as well as ductile
123. No correct option
124. 4
125. $\mathrm{Au}, \mathrm{Ag} \& \mathrm{Pt}$ are noble metal does not corrode easily.
126. 1
127. $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
128. 2
129. The solution turns methyl orange into yellow the approximate pH of solution is $3.1-4.4$
130. 2
131. $\mathrm{Zn}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
132. 1
133. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ (Sulphorus acid)
134. 2
135.

127. 4
127. A flagellum is present at one end of Leishmania.
128. 4
128. DNA is not present in Ribosomes.
129. 1
129. Wings of Housefly and wings of sparrow are an example of Analogous organs.
130. 2
130. Transpiration is not helpful in prevention of loss of water.
131. 2
131. Pulmonary veins carry oxygenated blood from lungs to heart.
132. 4
132. Cell division is promoted by cytokinin.
133. 3
133. Loop of Henle is found in Nephrons.
134. 1
134. Flight and fight hormone is Adrenalin.
135. 1
135. $\underset{T_{1}}{\text { Grass-Grasshopper }} \underset{T_{2}}{ }-\underset{T_{3}}{ } \underset{T_{4}}{ }-\underset{T_{5}}{ }$

5000 KJ energy available at the producer level
136. 2
136. Jaya and Ratna are varieties of rice.
137. 2
137. Sargam is not a water harvesting structure.
138. 4
138. ATP is formed by photosynthesizing plant cell during respiration and photosynthesis.
139. 4
139. Breathing rate in human is controlled by medulla oblongata.
140. 2
140. 31 pairs of nerves arises from Spinal cord.
141. 3
141. Let $a=2 k, b=3 k$

$$
x=3 \ell, y=4 \ell
$$

Now $\frac{2 a x-25 b y}{3 a y+4 b x}=\frac{-24}{5}$
142. 4
142. Diagonal of outer square $=2 a$
\Rightarrow Side of outer square $=\sqrt{2} a$
Diameter of inner circle $=\sqrt{2} a=$ Diagonal of inner square
\Rightarrow Side of inner square $=a$
143. 2
143. $a \cos \theta-b \sin \theta=c$
$\Rightarrow a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \cos \theta=c^{2}$
$\Rightarrow a^{2}-a^{2} \sin ^{2} \theta+b^{2}-b^{2} \cos ^{2} \theta-2 a b \sin \cos \theta=c^{2}$
$\Rightarrow a^{2}+b^{2}-c^{2}=(a \sin \theta+b \cos \theta)^{2}$
$\Rightarrow a \sin \theta+b \cos \theta= \pm \sqrt{a^{2}+b^{2}-c^{2}}$
144. 3
144. $x^{2}-3 x+2=(x-2)(x-1)$
$x-1$ and $x-2$ are factors of $x^{4}-p x^{2}+q$
$\Rightarrow-p+q=-1$ and $-4 p+q=-16$
On solving we get $p=5$ and $q=4$
145. 1
145. $\frac{1}{x_{1} x_{2}}+\frac{1}{x_{2} x_{3}}+\frac{1}{x_{3} x_{4}}+\ldots \ldots+\frac{1}{x_{n-1} x_{n}}$
$=\frac{1}{d}\left[\frac{d}{x_{1} x_{2}}+\frac{d}{x_{2} x_{3}}+\frac{d}{x_{3} x_{4}}+\ldots .+\frac{d}{x_{n-1} x_{n}}\right]$
$=\frac{1}{d}\left[\frac{x_{2}-x_{1}}{x_{1} x_{2}}+\frac{x_{3}-x_{2}}{x_{2} x_{3}}+\frac{x_{4}-x_{3}}{x_{3} x_{4}}+\ldots . .+\frac{x_{n}-x_{n-1}}{x_{n-1} x_{n}}\right]$
$=\frac{1}{d}\left[\left(\frac{1}{x_{1}}-\frac{1}{x_{2}}\right)+\left(\frac{1}{x_{2}}-\frac{1}{x_{3}}\right)+\left(\frac{1}{x_{3}}-\frac{1}{x_{4}}\right)+\ldots \ldots+\left(\frac{1}{x_{n-1}}-\frac{1}{x_{n}}\right)\right]$
$=\frac{1}{d}\left[\frac{x_{n}-x_{1}}{x_{n} x_{1}}\right]$
$=\frac{1}{d}\left[\frac{(n-1) d}{x_{n} x_{1}}\right]=\frac{n-1}{x_{1} x_{n}}$
146. 1
146. $x^{2}+\frac{1}{x^{2}}+y^{2}+\frac{1}{y^{2}}=4$

$$
\Rightarrow x^{2}+\frac{1}{x^{2}}-2+y^{2}+\frac{1}{y^{2}}-2=0
$$

$\Rightarrow\left(x-\frac{1}{x}\right)^{2}+\left(y-\frac{1}{y}\right)^{2}=0$
$\Rightarrow \mathrm{x}-\frac{1}{\mathrm{x}}=0$ and $\mathrm{y}-\frac{1}{\mathrm{y}}=0$
$\Rightarrow x^{2}=1$ and $y^{2}=1$
$\Rightarrow x^{2}+y^{2}=2$
147. 4
147. Let $\operatorname{ar}(\mathrm{APC})=\mathrm{x}$
then $\operatorname{ar}(A P D)=x$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=2 \mathrm{x}=\operatorname{ar}(\mathrm{ADE})$
So, $\frac{\operatorname{ar}(\mathrm{APC})}{\operatorname{ar}(\mathrm{ABD})}=\frac{\mathrm{x}}{4 \mathrm{x}}=\frac{1}{4}$
148. 2
148. $\frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}$
$\Rightarrow \frac{x^{a}}{x^{a}+x^{b}+x^{c}}+\frac{x^{b}}{x^{b}+x^{a}+x^{c}}+\frac{x^{c}}{x^{c}+x^{b}+x^{a}}$
$=1$
149. 2
149. Let height $=\mathrm{h}$ radius $=\mathrm{r}$

CSA $=2 \pi r h$
Increased height $=\frac{11 \mathrm{~h}}{10}$
Decreased radius $=\frac{9}{10} r$
New CSA $=2 \pi \mathrm{rh} \times \frac{99}{100}$
Decrease in CSA $=\frac{2 \pi \mathrm{rh}}{100}$
Decrease $\%=\frac{\frac{2 \pi \mathrm{rh}}{100}}{2 \pi \mathrm{rh}} \times 100=1 \%$
150. 4
150. Given AP is $0, d, 2 d, 3 d, \ldots \ldots,(n-1) d$

Given expression is
$=\left(\frac{a_{3}}{a_{2}}+\frac{a_{4}}{a_{3}}+\ldots . .+\frac{a_{n}}{a_{n-1}}\right)-\left(\frac{a_{2}}{a_{2}}+\frac{a_{2}}{a_{3}}+\ldots \ldots+\frac{a_{2}}{a_{n-2}}\right)$
$=\left(\frac{2 d}{d}+\frac{3 d}{2 d}+\ldots .+\frac{(n-1) d}{(n-2) d}\right)-\left[\frac{d}{d} \times \frac{d}{2 d}+\ldots \ldots+\frac{d}{(n-3) d}\right]$
$=\left(\frac{2}{1}+\frac{3}{2}+\ldots \ldots+\frac{n-1}{n-2}\right)-\left(\frac{1}{1}+\frac{1}{2}+\ldots \ldots+\frac{1}{n-3}\right)$

$$
\begin{aligned}
& =\left(\frac{2}{1}-\frac{1}{1}\right)+\left(\frac{3}{2}-\frac{1}{2}\right)+\ldots \ldots+\left(\frac{n-2}{n-3}-\frac{1}{n-3}\right)+\frac{n-1}{n-2} \\
& =\underbrace{1+1+1+\ldots}_{n-3 \text { times }}+\frac{n-1}{n-2} \\
& =n-3+\frac{n-1}{n-2}=\frac{n^{2}-4 n+5}{n-2}=n-2+\frac{1}{n-2}
\end{aligned}
$$

151. 3
152. $\frac{1}{\sqrt{r}}+\frac{1}{\sqrt{r}}=\frac{1}{\sqrt{r_{1}}}$

$$
\begin{aligned}
& \Rightarrow \frac{2}{\sqrt{r}}=\frac{1}{\sqrt{r_{1}}}\left(\because r_{1}=4\right) \\
& \Rightarrow \sqrt{r}=4 \Rightarrow r=16
\end{aligned}
$$

152. 2
152. Required area $=\frac{120}{360} \times \pi(6)^{2}-\frac{1}{2} \times 6^{2} \times \sin 120^{\circ}$

$$
\begin{aligned}
& =12 \pi-18 \times \frac{\sqrt{3}}{2} \\
& =12 \times 3.14-9 \times 1.732 \\
& =22.11 \approx 22 \mathrm{~cm}^{2}
\end{aligned}
$$

153. 3
154. $\frac{1}{y+z}+\frac{1}{x+z}=\frac{2}{x+y}$
$\Rightarrow \frac{x+z+y+z}{(y+z)(x+z)}=\frac{2}{(x+y)}$
$\Rightarrow(\mathrm{x}+\mathrm{y}+2 \mathrm{z})(\mathrm{x}+\mathrm{y})=2(\mathrm{y}+\mathrm{z})(\mathrm{x}+\mathrm{z})$
$\Rightarrow\left(x^{2}+x y+x y+y^{2}+2 x z+2 y z\right)=2\left(x y+y z+x z+z^{2}\right)$
$\Rightarrow x^{2}+2 x y+y^{2}+2 x z+2 y z=2 x y+2 y z+2 x z+2 z^{2}$
$\Rightarrow x^{2}+y^{2}=2 z^{2}$
155. 1
156. $x^{2}=y+z \Rightarrow x^{2}+x=x+y+z \Rightarrow x(x+1)=x+y+z$
$\Rightarrow \frac{1}{x+1}=\frac{x}{x+y+z}$
$y^{2}=z+x$
$z^{2}=x+y$
$y^{2}+y=x+y+z$
$\Rightarrow y(y+1)=x+y+z \Rightarrow \frac{1}{y+1}=\frac{y}{x+y+z}$
Similarly $\frac{1}{z+1}=\frac{z}{x+y+z}$
$\therefore \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1$
157. 2
158. Roots of $x^{3}+4 x+1=0$ are α, β, γ

$$
\begin{aligned}
& \alpha+\beta+\gamma=0 \\
& \alpha \beta+\beta \gamma+\gamma \alpha=4 \\
& \alpha \beta \gamma=-1 \\
& \frac{1}{\alpha+\beta}+\frac{1}{\beta+\gamma}+\frac{1}{\gamma+\alpha}=? \\
& \frac{1}{-\gamma}+\frac{1}{-\alpha}+\frac{1}{-\beta}=-\left(\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}\right)=\frac{-(4)}{-1}=4
\end{aligned}
$$

156. 4
157. Minimum value of $\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=$?

Apply AM - GM on $\frac{y}{x}, \frac{z}{x}, \frac{z}{y}, \frac{x}{y}, \frac{x}{z}, \frac{y}{z}$
$\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z} \geq 6 \sqrt[6]{\frac{y}{x} \cdot \frac{z}{x} \cdot \frac{z}{y} \cdot \frac{x}{y} \cdot \frac{x}{z} \cdot \frac{y}{z}}$
$\Rightarrow \frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z} \geq 6$
\therefore Min. value is $=6$
157. 3
157. Min. value of the expression $\frac{3 b+4 c}{a}+\frac{4 c+a}{3 b}+\frac{a+3 b}{4 c}=$?

Apply AM. GM on $\frac{3 b}{a}, \frac{4 c}{a}, \frac{4 c}{3 b}, \frac{a}{3 b}, \frac{a}{4 c}, \frac{3 b}{4 c}$
$\Rightarrow \frac{\frac{3 b}{a}+\frac{4 c}{a}+\frac{4 c}{3 b}+\frac{a}{3 b}+\frac{a}{4 c}+\frac{3 b}{4 c}}{6} \geq \sqrt[6]{\frac{3 b}{a} \cdot \frac{4 c}{a} \cdot \frac{4 c}{3 b} \cdot \frac{a}{3 b} \cdot \frac{a}{4 c} \cdot \frac{3 b}{4 c}}$
$\Rightarrow \frac{\frac{3 b}{a}+\frac{4 c}{a}+\frac{4 c+a}{3 b}+\frac{a+3 b}{4 c}}{6} \geq 1$
$\Rightarrow \frac{3 b+4 c}{a}+\frac{4 c+a}{3 b}+\frac{a+3 b}{4 c} \geq 6$
\therefore Minimum value $=6$
158. 3
158. $a^{3}=12 a$
$\Rightarrow a^{2}=12 \Rightarrow a=\sqrt{12}$
\therefore TSA $=6 a^{2}=6 \times 12=72$
159. 1
159. $14^{m}-6^{m}$
$a^{n}-b^{n}$ is always divisible by $a-b$
$\therefore 14^{m}-6^{m}$ is divisible by 8
160. 2
160. $\mathrm{TS}=3 \sqrt{5}$

TR = 3
$\mathrm{SR}=6$
$r=\frac{\Delta}{s}$
$\Delta=\frac{1}{2} \times 6 \times 3=9$
$r=\frac{9}{\frac{9+3 \sqrt{5}}{2}}=\frac{18}{3(3+\sqrt{5})}=\frac{6}{3+\sqrt{5}}$

161. 2
161. Democracy restored in Chile in 1988.
162. 3
162. Germany is not a operational member of security council.
163. 1
163. Mahatma Gandhi was not a member of the constituent assembly.
164. 1
164. General secretary Kofi A Anan said that US war on Iraq was not legal.
165. 3
165. President can declare emergency when the council of ministers in writing advices him to do so.
166. 4
166. KOSOVO was a province of try before the split of Yugoslavia.
167. 2
167. Nagaland state was born out of culture, ethnicity and geography.
168. 2
168. End of Racial discrimination is a part of right to equality fundamental right of citizen.
169. 3
169. Narivadi Aandolan is movement for Individual and family right of women.
170. 4
170. In transparency when decision are take with honesty and proper of rules.
171. 2
171. Amnesty International is the International Organisation that works for human rights.
172. 1
172. Livre was the currency of France.
173. 3
173. Elizabeth I was granted role right to trade with East to East India Company.
174. 4
174. Non-cooperation programme was adopted in Nagpur, in 1920 congress session.
175. 1
175. First Modern Novel published in Malayalam was Indulekha in 1889.
176. 3
176. "Damayanti" was made by Raja Ravi Verma.
177. 1
177. Simon Commission arrived in 1928 in India.
178. 1
178. Rinderpest is a term used for cattle disease.
179. 4
179. Giuseppe Garibaldi was a famous freedom fighter of Italy.
180. 3
180. Gudem Rebellion was led by Alluri Sitaram Raju.
181. 2
181. "The Social Contract" book was written by Rousseau.
182. 3
182. The Principle of the Garden City was developed by Ebenezer Howard.
183. 3
183. NABARD organization looks after the credit needs of agriculture and rural development in India.
184. 2
184. 3 phases are there in circular flow of income.
185. 2
185. Education is considered as social infrastructure.
186. 3
186. Cultivating more than one crop on the same field in a year called multiple cropping.
187. 1
187. Infant mortality rate refers to the death of child under the age of 1 .
188. 2
188. The Integrated Child Development Service (ICDS) introduced in 1975.
189. 3
189. The first chairman of planning commission was Jawaharlal Nehru.
190. 3
190. The total surface area of India covered by mountains is 30%.
191. 4
191. Mica has excellent dielectric strength insulating properties, low power loss factor and resistance to high voltage.
192. 2
192. OIL is an example of joint sector industry.
193. 4
193. Pipelines reduce trans-shipment losses and delays.
194. 1
194. Lake Victoria lies on the equator.
195. 4
195. The longitudinal valleys lying between lesser Himalayas and Shivaliks are known as Duns.
196. 3
196. The Western cyclonic disturbances originate from Mediterranean sea.
197. 3
197. Balancing the head to use resources and also conserve them for future is called sustainable development.
198. 1
198. The maximum number of National Park is in Andaman and Nicobar Islands.
199. 1
199. When some plates come towards each others is formed convergent boundary.
200. 2
200. The largest producer of cotton in the world is China.

