NTSE STAGE - I
 02 - A/ 2017 - 18 (For Class - X)
 MENTAL ABI LI TY TEST (MAT) HINTS \& SOLUTI ONS

1. 2
2. $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{9}}$
$\left[\left(\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}\right)+\left(\frac{1}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right)+\left(\frac{1}{\sqrt{4}+\sqrt{3}} \times \frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}}\right)+\ldots+\left(\frac{1}{\sqrt{9}+\sqrt{8}} \times \frac{\sqrt{9}-\sqrt{8}}{\sqrt{9}-\sqrt{8}}\right)\right]$
$\Rightarrow[(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})+\ldots+(\sqrt{9}-\sqrt{8})]$
$\Rightarrow(-1+\sqrt{9})=-1+3=2$
3. No option correct.
4. 3
5. $\frac{n(n-3)}{2}=35$
$n^{2}-3 n-70=0$
$\mathrm{n}=10$
$\frac{(\mathrm{n}-2) \times 180}{\mathrm{n}}=\frac{8 \times 180}{10}=144^{0}$
6. 4
7. $15-2 \div 900+90 \times 100=$?
$\Rightarrow 15 \times 2+900 \div 90-100=15 \times 2+10-100$
$\Rightarrow 30+10-100=40-100=-60$
8. 4
9. $(k+1) x^{2}-5 x+2 k=0$

Product of roots $=\alpha \cdot \frac{1}{\alpha}=\frac{2 k}{k+1}$
$\Rightarrow \mathrm{k}+1=2 \mathrm{k} \Rightarrow \mathrm{k}=1$
6. 2
6.

Let each side of cube $=2 a$
\therefore diameter of sphere $=2 a$
$\therefore \frac{\text { Vol. of cube }}{\text { Vol of sphere }}=\frac{(2 a)^{3}}{\frac{4}{3} \pi(a)^{3}}=\frac{8 a^{3}}{\frac{4}{3} \pi a^{3}}=\frac{6}{\pi}$
7. 2
7. $2 x^{2}-5 x+16=0$
$\left(\frac{\alpha^{2}}{\beta}\right)^{\frac{1}{3}}+\left(\frac{\beta^{2}}{\alpha}\right)^{\frac{1}{3}}$
$=\frac{\alpha^{2 / 3} \cdot \alpha^{1 / 3}+\beta^{2 / 3} \cdot \beta^{1 / 3}}{(\alpha \beta)^{1 / 3}}=\frac{\alpha+\beta}{(\alpha \beta)^{1 / 3}}=\frac{5 / 2}{2}=\frac{5}{4}$
8. 1
8. Divided $=$ Divisor \times Quotient + Rem

Quotien $=10$
\therefore divisor $=100$
\& remainder $=10$
\therefore divided $=100 \times 10+10=1010$
9. 2
9. $\left[(0.111)^{3}+(0.222)^{3}-(0.333)^{3}+(0.333)^{2}(0.222)\right]^{2}$

Taking common (0.111)
$(0.111)^{3}+(0.111)^{3}(2)^{3}-(0.111)^{3}(3)^{3}+(0.111)^{2}(3)^{2}(0.111)(2)$
$=(0.111)^{3}(1+8-27+18)$
$=0$
10. 2
10. $9^{2 n}-4^{2 n}$ is of form $a^{n}-b^{n}$ (where n is even)

Therefore $a^{n}-b^{n}$ is always divisible by $(a-b) \&(a+b)$
So it is divisible by $(9+4)$ and $(9-4)$ i.e., 5 and 13
11. 1
11. $\mathrm{LCM}+\mathrm{HCF}=50$

LCM $-\mathrm{HCF}=20$
\therefore LCM $=35 \&$ HCF $=15$
\therefore product of number $=$ LCM \times HCF
$=35 \times 15$
$=525$
12. 1
12. Speed of train $=\frac{\text { length of train }+ \text { length of platform }}{\text { time taken by train }}$
$\Rightarrow 120 \times \frac{5}{18}=\frac{320+x}{24}$ (Let length of platform be x m)
$\therefore \mathrm{x}=480 \mathrm{~m}$
\therefore Speed of man $=\frac{\text { length of platform }}{\text { time taken by man }}$
$=\frac{480}{4 \times 60}=2 \mathrm{~m} / \mathrm{sec}$
13. 4
13. $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\frac{a+b}{2}$ when $(n=0)$
\Rightarrow value of $\mathrm{n}=0$
14. 3
14. Let total workers $=x$
\therefore women $=\frac{1}{3} \mathrm{x}$
\therefore men $=\frac{2}{3} x$
Women with children $=\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3} x=\frac{x}{18}$
Men with children $=\frac{3}{4} \times \frac{2}{3} \times \frac{2 x}{3}=\frac{x}{3}$
Worker with children $=\frac{x}{18}+\frac{x}{3}=\frac{7 x}{18}$
Worker without children $=x-\frac{7 x}{18}=\frac{11}{18}$ of x
15. 4
15. Let Akash earns x rs. As profit

Then Alok earns $=x+\frac{75 x}{100}=\frac{175 x}{100}=\frac{7 x}{4}$
\therefore Akash's profit is less than Alok by
$=\frac{\frac{7 x}{4}-x}{\frac{7 x}{4}} \times 100$
$=\frac{\frac{3 x}{4}}{\frac{7 x}{4}} \times 100$
$=\frac{3}{7} \times 100=42.85 \%$
16. 3
16. Let height of towers, be $5 x, 6 x, 7 x$ meter respectively
\therefore Speed of spider $=\frac{5 x}{15} \mathrm{~m} / \mathrm{min}$
\therefore Time taken to climb the highest one $=\frac{7 \mathrm{x}}{5 \mathrm{x}}$ $\overline{15}$
$=\frac{7 x \times 15}{5 x}$
$=21 \mathrm{~min}$
17. 1
17. Centroid $=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
$(0,1)=\left(\frac{4+2+\mathrm{x}_{3}}{3}, \frac{-2-6+\mathrm{y}_{3}}{3}\right)$
$\therefore\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=(-6,11)$
18. 1
18. $\cos ^{2} \alpha=\sin \alpha \cdot \tan \alpha$
$\cos ^{3} \alpha=\sin ^{2} \alpha$
$\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}=\frac{1}{\cos \alpha} \Rightarrow \cot ^{2} \alpha=\frac{1}{\cos \alpha}$
$\cot ^{6} \alpha-\cot ^{2} \alpha=\cot ^{2} \alpha\left(\cot ^{4} \alpha-1\right)$
$=\frac{1}{\cos \alpha}\left(\frac{1}{\cos ^{2} \alpha}-1\right)$
$=\frac{1}{\cos \alpha}\left(\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}\right)=\frac{\sin ^{2} \alpha}{\cos ^{3} \alpha}=1$
19. 3
19. $7+6+5+4+3+2+1=28$
20. 2
20. We can choose vertices out of 6 in ${ }^{6} \mathrm{C}_{3}=20$ ways

Chosen vertices can form equilateral triangle in just 2 ways
Required probability $=\frac{2}{20}=\frac{1}{10}$
21. 2
21. $A=630$ males teacher in $F=100$
$B=720$ female teacher in $C=28 \%$ of $4500-(600)$
$C=1260 \quad=660$
D $=675$
$E=945 \quad$ female in $B=16 \%$ of $1500-400$
$\mathrm{F}=270=320$
$\Rightarrow 100+660+320=1080$
22. 4
22. $\frac{x}{100} \times 630=575 \Rightarrow x=90 \%$
23. 3
23. In B we have 630 total teachers

Male $=400$
Female $=230$
In E we have 945 total teachers
Male $=500$
Female $=445$
24. 2
24. Total number of teachers in $\mathrm{E}=945$

Female teachers in F = 170
Difference $=945-170=775$
25. 3
25. Male in $\mathrm{C} \rightarrow 600$

Female in B $\rightarrow 320$
$C_{M}: B_{F}=600: 320=15: 8$
26. 1
26. $25 \times 10+5=255,255 \times 10-5=2545,2545 \times 10+5,25455 \times 10-5=254545$
27. 4
27. $4 \times 3=12 \rightarrow$ Alphabet position of L
$1 \times 17=17 \rightarrow$ Alphabet position of Q
$5 \times 4=20 \rightarrow$ Alphabet position of T
28. 4
28. After removing even numbers

15971535975913513
Answer $\rightarrow 9$
29. 4
29. Total hours $=89$ hours

Faulty time 23 hours \& $44 \mathrm{~min}=23+\frac{44}{60}$ i.e, $\frac{356}{15} \mathrm{hr}$
$\frac{356}{15} \mathrm{hr}$ of incorrect watch $=24 \mathrm{hr}$ of correct watch
$\therefore 89$ hours of incorrect watch $=\frac{24 \times 15}{356} \times 89=90 \mathrm{hrs}$
\therefore Actually watch will be 1 hr faster than faulty watch.
i.e., 11 pm
30. 2
30. $1+2+3 \ldots 56$

Sum $=\frac{n(n+1)}{2}=\frac{56 \times 57}{2}=28 \times 57=1596$
31. 2
31. Total white box $=\frac{64}{2}=32$

Now odd in white box $=\frac{32}{2}=16$
32. 4
32.

[^0]\bigcirc means couple

- means brother / daughter means son / daughter

33. 2
34.

34. 2
34.

35. 1
35.

36. 4

37. 3
37. 1 mango $=4$ banana
$=2$ apples
= 10 strawberries
38. 2
38. $52<4 \wedge 5>8 \vee 2$
$52-4 \times 5+8 \div 2$
$52-4 \times 5+4$
$56-20=36$
39. 1
39. 4:35

To find mirror image
$11: 60-4: 35=7: 25$
40. 1
40.

All the smaller cubes have colour on their faces,
41. 2
41.

The larger faces will have one face coloured cube which is four on each face.
So, in total there are four larger faces.
$4 \times 4=16$
16 cubes will have only one face colour.
42. 2
42. Unemployment

43. 1
43. By observation
44. 4
44. From one row to another the contents of each cell moves one place towards right.
45. 3
45. By observation
46. 4
46. By observation.
47. 1
47. Blue $\rightarrow 2$

Sky $\rightarrow 1$
Was $\rightarrow 3$
People $\rightarrow 8$
Like $\rightarrow 0$
In $\rightarrow 6$
Birds $\rightarrow 9$
'People like birds' $\rightarrow 809$
48. 1
48. $5 \times 2+2=12$
$12 \times 2+2=26$
$26 \times 2+2=54$
49. 3
49. $\quad 9 \times(2+1)=27$
$7 \times(3+2)=35$
$4 \times(4+?)=36$
? $=9-4=5$
50. 2
50. $\sqrt{64}+\sqrt{36}+\sqrt{49}=8+6+7=21$
$\sqrt{121}+\sqrt{81}+\sqrt{100}=11+9+10=30$

NTSE STAGE - I SCHOLASTIC APTITUDE TEST (SAT) HINTS \& SOLUTIONS

PHYSICS

101. 1
102.

Minimum number of forces required is 3 .
102. 1
102. Resistance of the heater be R .

New resistance of heater is R/2.
Initial power $=\frac{V^{2}}{R}$
Final power $=\frac{V^{2}}{R / 2}=2 \frac{V^{2}}{R}$
\therefore Heat generated is doubled.
103. 3
103.

Force acting at different part of the magnet is different. So both torque and force will be acting.
104. 2
104. $\mathrm{P}=2 \times 10^{3}$ watt

Energy in $1 \mathrm{~min}=2 \times 10^{3} \times 60 \mathrm{~J}$.
$\Rightarrow 2 \times 10^{3} \times 60=m \times 10 \times 10$
$\Rightarrow \mathrm{m}=1200 \mathrm{~kg}$; Volume $=1200$ litre .
105. 3
105. Initial velocity $=\mathrm{V}$

Final velocity $=\mathrm{V}^{\prime}$
$\frac{1}{2} m v^{2} \times 4=\frac{1}{2} m\left(v^{\prime}\right)^{2}$
$\mathrm{V}^{\prime}=2 \mathrm{~V}$.
Initial momentum $=\mathrm{mv}$
Final momentum $=2 \mathrm{mv}$.
\therefore Momentum is doubled.
106. 3
106. Total work done by gravity is zero.
107. 2
107. $\Rightarrow \frac{\mathrm{GM}_{\mathrm{m}} \times 80}{\left(2 \mathrm{R}_{\mathrm{m}}\right)^{2}}=9.8$
$\Rightarrow \quad \frac{\mathrm{GMm}}{\mathrm{Rm}^{2}}=\frac{9.8}{40}=0.49 \mathrm{~m} / \mathrm{s}^{2}$
108. 2
108. $P=P_{1}+P_{2}$
$\Rightarrow P=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$\Rightarrow \quad P=\frac{\mathrm{f}_{1}+\mathrm{f}_{2}}{\mathrm{f}_{1} \mathrm{f}_{2}}$
109. 1
109. $\frac{\operatorname{Sin} i}{\operatorname{Sin} r}=\frac{V_{1}}{V_{2}}$
$\Rightarrow \frac{\operatorname{Sin} 30}{\operatorname{Sin} 60}=\frac{V}{V^{\prime}}$
$\Rightarrow \quad \mathrm{V}^{\prime}=\sqrt{3} \mathrm{~V}$
110. 2
110. $\frac{1}{2} g(t)^{2}-\frac{1}{2} g(t-2)^{2}=40$

$$
\Rightarrow \quad 5 t^{2}-5(t-2)^{2}=40
$$

$$
\Rightarrow \quad \mathrm{t}^{2}-(\mathrm{t}-2)^{2}=8
$$

$$
\Rightarrow \quad t=3
$$

$\therefore \quad$ height $=\frac{1}{2}$ gt $^{2}=\frac{1}{2} \times 10 \times 9=45 \mathrm{~m}$.
111. 4
111. $\mathrm{R}=\frac{\rho \ell}{\mathrm{A}}$

New area $=n A$
\therefore New length $=\frac{\ell}{n}$
$\Rightarrow R^{\prime}=\frac{\rho \ell}{n^{2} A}=\frac{R}{n^{2}}$
112. 3
112. Ammeter has low resistance and due to its resistance current in the circuit decreases.
113. 4
113. As the rays are diverging so the optical device is convex mirror.
114. 4
114. Work is zero only when force and displacement are perpendicular to each other. So, work will be down in all the cases.

CHEMISTRY

115. 2
116. Silver is a good conductor of electricity.
117. 1
118. $\mathrm{Cr}=[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$

Half filled configuration of d - subshell is more symmetrical.
117. 3
117. Amphoteric.
$\mathrm{Al}_{2} \mathrm{O}_{3}$ can react with acid and base both.
118. 3
118. As Solution is acidic so $\mathrm{pH}<7$
119. 3
119. In basic solution phenolphthalein shows pink colour.
120. 1
120. $4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}$
$4 \mathrm{~s}=$ one orbital, $\quad 4 \mathrm{~d}=$ five orbital \quad Total $=7+5+3+1$
$4 p=$ Three orbital $4 f=$ seven orbital $=16$
So, Total no. of electron $=32$
121. 1
121. Addition of NaCl results precipitation of soap to separate out soap from the solution. (as in question paper sodium is given which is considered wrong. It should be NaCl)
122. 3
122. There are 3 allotropes of carbon.

123. 2
123. Due to $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \& \mathrm{CaSO}_{4}$.

As oxides of nitrogen \& sulphur reacts with limestone on Taj Mahal to form nitrates and sulphates of calcium.
124. 1
124. $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{~N}_{2} \mathrm{O}$, and O_{3}

Act as green house gases.
125. 1
125. s, p, d, f subshells are present in an atom.
126. 1
126. Boron and cadmium used in atomic reactors to control speed of neutron.
127. 2
127. Moles $=\frac{1000}{108}=9.25$

No. of atoms $=9.25 \times 6.023 \times 10^{23}$

$$
=5.571 \times 10^{24} \text { atoms }
$$

BIOLOGY

128. 2
129. Chromosomes carry genes, which are the hereditary units, which carry hereditary characters to the offspring.
130. 3
131. Mitochondria is called the power house of the cell.
132. 4
133. Plasma membrane is made up of both protein and lipid.
134. 2
135. Oviduct is the site of fertilization in humans.
136. 1
137. Heart never takes rest as it has cardiac muscles which never gets fatigue.
138. 1
139. Lacteal present in the villi of the small intestine help to absorb fatty acids and glycerol.
140. 1
141. The experiment 'origin of primitive life on Earth' was performed by Urey and Miller.
142. 2
143. Bicuspid valve is present in the human heart in between left atrium and left ventricle.
144. 3
145. During the light reaction NADPH and ATP are synthesized which is utilized in dark reaction.
146. 4
147. Grafting in monocot plants is not possible because they have scattered Vascular Bundles.
148. 1
149. Haemophilia disease is linked with sex chromosome.
150. 3
151. The primary building blocks of DNA Nitrogenous base, phosphorus and deoxyribose.
152. 1
153. Islets of Langerhans helps in formation of insulin

MATHEMATICS

141. 4
142. $x^{4}+4 x^{3}+n x^{2}+4 x+1=\left(a x^{2}+b x+c\right)^{2}$
$x^{4}+4 x^{3}+n x^{2}+4 x+1=a^{2} x^{4}+b^{2} x^{2}+c^{2}$
$+2 a b x^{3}+2 b c x+2 a c x^{2}$
$=a^{2} x^{4}+2 a b x^{3}+\left(b^{2}+2 a c\right) x^{2}+2 b c x+c^{2}$
Comparing coefficients,
$a^{2}=1$
$c^{2}=1$
$2 \mathrm{ab}=4$
$\mathrm{b}^{2}+2 \mathrm{ac}=\mathrm{n}$
$2 b c=4$
Solving, we get $\frac{a}{c}=1 \Rightarrow a=c$
$\mathrm{b}= \pm 2, \mathrm{a}= \pm 1, \mathrm{c}= \pm 1$
$\therefore \mathrm{b}^{2}+2 \mathrm{ac}=4+2=6$
143. 3
144. Let initial salary be Rs. 100

After 10% reduction, salary $=$ Rs. 90
\therefore Required percent of increase $=\frac{10}{90} \times 100$
$=11 \frac{1}{9} \%$
143. 2
143. Let $\sqrt{x}=a, \sqrt{y}=b$

Given equation $a^{3}+b^{3}=183$ and $a^{2} b+a b^{2}=182$
$\Rightarrow(\mathrm{a}+\mathrm{b})^{3}-3 \mathrm{ab}(\mathrm{a}+\mathrm{b})=183$ and $\mathrm{ab}(\mathrm{a}+\mathrm{b})=182$
$\Rightarrow(\mathrm{a}+\mathrm{b})^{3}=183+3 \times 182$
$\Rightarrow \mathrm{a}+\mathrm{b}=9$ and $\mathrm{ab}=\frac{182}{9}$
Now $\sqrt{x}+\sqrt{y}=9$ and $\sqrt{x y}=\frac{182}{9}$
So, $x+y=81-2 \sqrt{x y}=\frac{365}{9}$
$\Rightarrow \frac{18}{5}(x+y)=146$
144. 3
144. Minimum value of $m+n=$

Minimum value of $m+$ minimum value of n
$=9+16=25$
145. 3
145. Let $x=a, y=2 b, z=4 c$
then $(a)^{2}+(2 b)^{2}+(4 c)^{2}=48 \quad \Rightarrow x^{2}+y^{2}+z^{2}=48$
and $2 a b+8 b c+4 c a=48 \quad \Rightarrow x y+y z+z x=48$
Now, $(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=0$
$x=y=z$
$a=2 b=4 c$
$\frac{a}{4}=\frac{b}{2}=\frac{c}{1}=\lambda$
So, $\mathrm{ab}+4 \mathrm{bc}+2 \mathrm{ca}=4 \lambda .2 \lambda+8 \lambda . \lambda+2 \lambda .4 \lambda=24$
$\lambda^{2}(8+8+8)=24$
$\lambda= \pm 1$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=21 \lambda^{2}=21$
146. 3
146. By angle sum property of $\triangle \mathrm{ACE}$ and $\triangle \mathrm{DBF}$

147. No option is correct

147. $\sin ^{4} x=\cos ^{2} x$
$\Rightarrow\left(1-\cos ^{2} x\right)^{2}=\cos ^{2} x$
$\Rightarrow \cos ^{4} x-3 \cos ^{2} x+1=0$
$\Rightarrow \cos ^{2} x=\frac{3-\sqrt{5}}{2}$
Now, $\cos ^{4} x+\cos ^{2} x=\left(\frac{3-\sqrt{5}}{2}\right)^{2}+\left(\frac{3-\sqrt{5}}{2}\right)$
$=5-2 \sqrt{5}$
148. No option is correct
149. The roots are 1, 2, 3 and k
$1+2+3+k=0$
$\mathrm{k}=-6$
$\mathrm{c}=1 \times 2 \times 3 \times-6$
c $=-36$
150. 3
151. $\mathrm{x}=4+\sqrt{15}$
$y=4-\sqrt{15}$
$x+y=8$
$x y=1$
$x^{3}+y^{3}=(x+y)\left((x+y)^{2}-3 x y\right)$
$=8(64-3)$
$=8(61)$
$=488$
152. 4
153. $\mathrm{AD}=10 \mathrm{~cm}, \mathrm{BE}=12 \mathrm{~cm}, \mathrm{CF}=15 \mathrm{~cm}$

Let $B C=a c m$
$A C=b c m$
$A B=c \mathrm{~cm}$
Area of $\Delta=\frac{1}{2} \times 10 \mathrm{a}=\frac{1}{2} \times 12 \mathrm{~b}=\frac{1}{2} \times 15 \mathrm{c}$
$\Rightarrow a: b: c=6: 5: 4$
let sides are $6 x, 5 x$ and $4 x$
$\Rightarrow \frac{1}{2} \times 10 \times 6 x=\sqrt{\frac{15 x}{2}\left(\frac{15 x}{2}-6 x\right)\left(\frac{15 x}{2}-5 x\right)\left(\frac{15 x}{2}-4 x\right)}$

$\Rightarrow x=\frac{8}{\sqrt{7}}$
So, semi perimeter $=\frac{60}{\sqrt{7}} \mathrm{~cm}$
151. 3
151. $12 \cot ^{2} \theta-31 \operatorname{cosec} \theta+32=0$
$12\left(\operatorname{cosec}^{2} \theta-1\right)-31 \operatorname{cosec} \theta+32=0$
$12 \operatorname{cosec}^{2} \theta-31 \operatorname{cosec} \theta+20=0$
$12 \operatorname{cosec}^{2} \theta-16 \operatorname{cosec} \theta-15 \operatorname{cosec} \theta+20=0$
$4 \operatorname{cosec} \theta(3 \operatorname{cosec} \theta-4)-5(3 \operatorname{cosec} \theta-4)=0$
$\operatorname{cosec} \theta=\frac{5}{4}$ or $\frac{4}{3} \Rightarrow \sin \theta=\frac{4}{5}$ or $\frac{3}{4}$
152. No option is correct
152. $\frac{1}{2} \mathrm{ac}=16$
$\mathrm{ac}=32$
ed $=18$
$a b=50$
$\frac{c}{b}=\frac{32}{50}=\frac{16}{25}$
e. $\frac{9}{25} \mathrm{~b}=18$
$\mathrm{eb}=\frac{18 \times 25}{9}=50$
$e=a f=0$

$\therefore \triangle A E F=25$
153. 4
153. When side changes from S to $2 S$ volume changes from $2 S$ to $8 S^{3}$
$S \rightarrow S^{3}$
$2 \mathrm{~S} \rightarrow 8 \mathrm{~S}^{3}$
\therefore Increase percent $=\frac{75^{3}}{5^{3}} \times 100$
= 700%
154. 2
154. $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\pi(2 \mathrm{x})^{2} \cdot 5 \mathrm{y}}{\pi(3 \mathrm{x})^{2} \cdot 3 \mathrm{y}}$

$$
=\frac{20}{27}
$$

155. 2
156. Ratio of volumes
$\frac{1}{3} \pi r^{2}: r: \pi r^{2} r: \frac{2}{3} \pi r^{3}$
$=\frac{1}{3}: 1: \frac{2}{3}$
$=1: 3: 2$
157. 1
158. CP of $1=$ Rs. 10000

CP of $2=$ Rs. 20000
\therefore No profit, No loss
157. 1
157. $a_{1}+a_{2}+\ldots \ldots .+a_{7}+a_{8}=160$
$a_{1}+a_{2}=31$
$a_{3}+a_{4}+a_{5}=64$
$a_{7}-a_{6}=4$
$a_{8}-a_{6}=7$
Solving we get
$a_{6}=18$
$\mathrm{a}_{7}=22$
$\mathrm{a}_{8}=25$
158. 1
158. $\mathrm{R}=\frac{2}{3} \times$ altitude

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{\sqrt{3}}{2} \times 3 \sqrt{3} \\
& =3 \mathrm{~cm}
\end{aligned}
$$

159. 2
160. $9^{1} \sqrt[3]{x}+\frac{2}{9} \sqrt[3]{x}+\frac{1}{6} \sqrt[3]{x}=1$
$\sqrt[3]{\mathrm{x}}\left(\frac{1}{3}+\frac{1}{6}\right)=1$
$\sqrt[3]{x}\left(\frac{2+1}{6}\right)=1$

$$
\sqrt[3]{x}=2
$$

$$
x=8
$$

160. No option is correct
161. $\mathrm{x}-10=\frac{40}{100} \times \mathrm{x}$
$\Rightarrow \overline{\mathrm{x}}=\frac{50}{3}$
If each observation is increased by 5 then new mean $=\frac{65}{3}$

[^0]: + means male member
 - means female members

