

Class 12 Maths NCERT Solutions Chapter - 8 Application of Integrals Exercise 8.1

Q 1:

Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis.

Answer:

The area of the region bounded by the curve, $y^2 = x$, the lines, x = 1 and x = 4, and the x-axis is the area ABCD.

Area of ABCD =
$$\int_{1}^{4} y \, dx$$

= $\int_{1}^{4} \sqrt{x} \, dx$
= $\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$
= $\frac{2}{3} \left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right]$
= $\frac{2}{3} [8 - 1]$
= $\frac{14}{3}$ units

Q 2:

Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.

Answer:

The area of the region bounded by the curve, $y^2 = 9x$, x = 2, and x = 4, and the x-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{4} y \, dx$$

= $\int_{2}^{4} 3\sqrt{x} \, dx$
= $3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[x^{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}}\right]$
= $2\left[8 - 2\sqrt{2}\right]$
= $\left(16 - 4\sqrt{2}\right)$ units

Q 3:

Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

Answer:

The area of the region bounded by the curve, $x^2 = 4y$, y = 2, and y = 4, and the y-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{4} x \, dy$$

= $\int_{2}^{4} 2\sqrt{y} \, dy$
= $2 \int_{2}^{4} \sqrt{y} \, dy$
= $2 \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{2}^{4}$
= $\frac{4}{3} \left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}} \right]$
= $\frac{4}{3} \left[8 - 2\sqrt{2} \right]$
= $\left(\frac{32 - 8\sqrt{2}}{3} \right)$ units

Q 4:

Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ Answer:

The given equation of the ellipse, $\frac{x^2}{16} + \frac{y^2}{9} = 1$, can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

 \therefore Area bounded by ellipse = 4 \times Area of OAB

Area of OAB =
$$\int_0^4 y \, dx$$

= $\int_0^4 3\sqrt{1 - \frac{x^2}{16}} dx$
= $\frac{3}{4} \int_0^4 \sqrt{16 - x^2} \, dx$
= $\frac{3}{4} \left[\frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \frac{x}{4} \right]_0^4$
= $\frac{3}{4} \left[2\sqrt{16 - 16} + 8 \sin^{-1} (1) - 0 - 8 \sin^{-1} (0) \right]$
= $\frac{3}{4} \left[\frac{8\pi}{2} \right]$
= $\frac{3}{4} [4\pi]$
= 3π

Therefore, area bounded by the ellipse = $4 \times 3\pi = 12\pi$ units

Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$

Answer:

The given equation of the ellipse can be represented as

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

$$\Rightarrow y = 3\sqrt{1 - \frac{x^2}{4}} \qquad \dots (1)$$

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

∴ Area bounded by ellipse = 4 × Area OAB

∴ Area of OAB =
$$\int_0^2 y \, dx$$

= $\int_0^2 3\sqrt{1 - \frac{x^2}{4}} dx$ [Using (1)]
= $\frac{3}{2} \int_0^2 \sqrt{4 - x^2} \, dx$
= $\frac{3}{2} \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-} \frac{x}{2} \right]_0^2$
= $\frac{3}{2} \left[\frac{2\pi}{2} \right]$
= $\frac{3\pi}{2}$

Therefore, area bounded by the ellipse = $4 \times \frac{3\pi}{2} = 6\pi$ units

Q 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the

circle
$$x^2 + y^2 = 4$$

Answer

The area of the region bounded by the circle, $x^2 + y^2 = 4$, $x = \sqrt{3}y$, and the x-axis is the area OAB.

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3},1)$. Area OAB = Area \triangle OCA + Area ACB

...(2)

Area of OAC =
$$\frac{1}{2} \times OC \times AC = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2}$$
 ...(1)

Area of ABC =
$$\int_{\sqrt{3}}^{2} y \, dx$$

$$= \int_{\sqrt{3}}^{2} \sqrt{4 - x^2} \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{\sqrt{3}}^{2}$$

$$= \left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} \sqrt{4 - 3} - 2 \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right]$$

$$= \left[\pi - \frac{\sqrt{3}\pi}{2} - 2 \left(\frac{\pi}{3} \right) \right]$$

$$= \left[\pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} \right]$$

$$= \left[\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right]$$

Therefore, area enclosed by x-axis, the line $x = \sqrt{3}y$, and the circle $x^2 + y^2 = 4$ in the first

quadrant =
$$\frac{\sqrt{3}\pi}{2} + \frac{3\sqrt{\pi}}{3} = \frac{3\sqrt{\pi}}{2}$$
 units

Q 7:

Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$ Answer:

The area of the smaller part of the circle, $x^2+y^2=a^2$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is the area ABCDA.

It can be observed that the area ABCD is symmetrical about x-axis.

∴ Area ABCD = 2 × Area ABC

Area of ABC =
$$\int_{\frac{a}{\sqrt{2}}}^{a} y \, dx$$

= $\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^2 - x^2} \, dx$
= $\left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_{\frac{a}{\sqrt{2}}}^{a}$
= $\left[\frac{a^2}{2} \left(\frac{\pi}{2} \right) - \frac{a}{2\sqrt{2}} \sqrt{a^2 - \frac{a^2}{2}} - \frac{a^2}{2} \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) \right]$
= $\frac{a^2 \pi}{4} - \frac{a}{2\sqrt{2}} \cdot \frac{a}{\sqrt{2}} - \frac{a^2}{2} \left(\frac{\pi}{4} \right)$
= $\frac{a^2 \pi}{4} - \frac{a^2}{4} - \frac{a^2 \pi}{8}$
= $\frac{a^2}{4} \left[\pi - 1 - \frac{\pi}{2} \right]$
= $\frac{a^2}{4} \left[\frac{\pi}{2} - 1 \right]$
 $\Rightarrow Area ABCD = 2 \left[\frac{a^2}{4} \left(\frac{\pi}{2} - 1 \right) \right] = \frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$

Therefore, the area of smaller part of the circle, $x^2 + y^2 = a^2$, cut off by the line, $x = \frac{a}{\sqrt{2}}$,

is
$$\frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$$
 units.

Q 8:

The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

Answer:

The line, x = a, divides the area bounded by the parabola and x = 4 into two equal parts.

.. Area OAD = Area ABCD

It can be observed that the given area is symmetrical about x-axis.

⇒ Area OED = Area EFCD

Area OED =
$$\int_{0}^{a} y \, dx$$

= $\int_{0}^{a} \sqrt{x} \, dx$
= $\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a}$
= $\frac{2}{3}(a)^{\frac{3}{2}}$...(1)
Area of EFCD = $\int_{0}^{4} \sqrt{x} \, dx$
= $\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4}$
= $\frac{2}{3}\left[8-a^{\frac{3}{2}}\right]$...(2)

From (1) and (2), we obtain

$$\frac{2}{3}(a)^{\frac{3}{2}} = \frac{2}{3} \left[8 - (a)^{\frac{3}{2}} \right]$$

$$\Rightarrow 2 \cdot (a)^{\frac{3}{2}} = 8$$

$$\Rightarrow (a)^{\frac{3}{2}} = 4$$

$$\Rightarrow a = (4)^{\frac{2}{3}}$$

Therefore, the value of a is $\left(4\right)^{\frac{2}{3}}$.

Q 9:

Find the area of the region bounded by the parabola $y=x^2$ and y=|x| Answer:

The area bounded by the parabola, $x^2 = y$, and the line, y = |x|, can be represented as

The given area is symmetrical about y-axis.

.. Area OACO = Area ODBO

The point of intersection of parabola, $x^2 = y$, and line, y = x, is A (1, 1). Area of OACO = Area \triangle OAB - Area OBACO

$$\therefore \text{ Area of } \triangle \text{OAB} = \frac{1}{2} \times \text{OB} \times \text{AB} = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$

Area of OBACO =
$$\int_{0}^{1} y \, dx = \int_{0}^{1} x^{2} \, dx = \left[\frac{x^{3}}{3} \right]_{0}^{1} = \frac{1}{3}$$

$$\Rightarrow$$
 Area of OACO = Area of ΔOAB - Area of OBACO
$$= \frac{1}{2} - \frac{1}{3}$$

$$=\frac{1}{6}$$

Therefore, required area = $2\left\lceil \frac{1}{6} \right\rceil = \frac{1}{3}$ units

Q 10:

Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2

Answer

The area bounded by the curve, $x^2 = 4y$, and line, x = 4y - 2, is represented by the shaded area OBAO.

Let A and B be the points of intersection of the line and parabola.

Coordinates of point A are $\left(-1, \frac{1}{4}\right)$

Coordinates of point B are (2, 1).

We draw AL and BM perpendicular to x-axis.

It can be observed that,

Area OBAO = Area OBCO + Area OACO ... (1)

Then, Area OBCO = Area OMBC - Area OMBO

$$= \int_{0}^{2} \frac{x+2}{4} dx - \int_{0}^{2} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{0}^{2} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{0}^{2}$$

$$= \frac{1}{4} [2+4] - \frac{1}{4} \left[\frac{8}{3} \right]$$

$$= \frac{3}{2} - \frac{2}{3}$$

$$= \frac{5}{6}$$

Similarly, Area OACO = Area OLAC - Area OLAO

$$= \int_{1}^{0} \frac{x+2}{4} dx - \int_{1}^{0} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{-1}^{0} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{-1}^{0}$$

$$= -\frac{1}{4} \left[\frac{(-1)^{2}}{2} + 2(-1) \right] - \left[-\frac{1}{4} \left(\frac{(-1)^{3}}{3} \right) \right]$$

$$= -\frac{1}{4} \left[\frac{1}{2} - 2 \right] - \frac{1}{12}$$

$$= \frac{1}{2} - \frac{1}{8} - \frac{1}{12}$$

$$= \frac{7}{24}$$

Therefore, required area = $\left(\frac{5}{6} + \frac{7}{24}\right) = \frac{9}{8}$ units

Q 11:

Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3Answer:

The region bounded by the parabola, $y^2 = 4x$, and the line, x = 3, is the area OACO.

The area OACO is symmetrical about x-axis.

∴ Area of OACO = 2 (Area of OAB)

Area OACO =
$$2\left[\int_0^3 y \, dx\right]$$

= $2\int_0^3 2\sqrt{x} \, dx$
= $4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^3$
= $\frac{8}{3}\left[\left(3\right)^{\frac{3}{2}}\right]$
= $8\sqrt{3}$

Therefore, the required area is $8\sqrt{3}$ units.

Q 12:

Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

- А. п
- B. $\frac{\pi}{2}$
- C. $\frac{\pi}{3}$
- D. $\frac{\pi}{4}$

Answer:

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as

$$\therefore \text{ Area OAB} = \int_0^2 y \, dx$$

$$= \int_0^2 \sqrt{4 - x^2} \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$$

$$= 2 \left(\frac{\pi}{2} \right)$$

$$= \pi \text{ units}$$

Thus, the correct answer is A.

Q 13:

Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

- **A.** 2
- **B.** $\frac{9}{4}$
- **c.** $\frac{9}{3}$
- **D.** $\frac{9}{2}$

Answer:

The area bounded by the curve, $y^2 = 4x$, y-axis, and y = 3 is represented as

$$\therefore \text{ Area OAB} = \int_0^3 x \, dy$$

$$= \int_0^3 \frac{y^2}{4} \, dy$$

$$= \frac{1}{4} \left[\frac{y^3}{3} \right]_0^3$$

$$= \frac{1}{12} (27)$$

$$= \frac{9}{4} \text{ units}$$

Thus, the correct answer is B.

Exercise 8.2

Q 1:

Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$ Answer:

The required area is represented by the shaded area OBCDO.

Solving the given equation of circle, $4x^2+4y^2=9$, and parabola, $x^2=4y$, we obtain the point of intersection as $B\left(\sqrt{2},\frac{1}{2}\right)$ and $D\left(-\sqrt{2},\frac{1}{2}\right)$

It can be observed that the required area is symmetrical about *y*-axis.

We draw BM perpendicular to OA.

Therefore, the coordinates of M are $\left(\sqrt{2},0\right)$

Therefore, Area OBCO = Area OMBCO - Area OMBO

$$= \int_{0}^{\sqrt{2}} \sqrt{\frac{9-4x^{2}}{4}} dx - \int_{0}^{\sqrt{2}} \sqrt{\frac{x^{2}}{4}} dx$$

$$= \frac{1}{2} \int_{0}^{\sqrt{2}} \sqrt{9-4x^{2}} dx - \frac{1}{4} \int_{0}^{\sqrt{2}} x^{2} dx$$

$$= \frac{1}{4} \left[x\sqrt{9-4x^{2}} + \frac{9}{2} \sin^{-1} \frac{2x}{3} \right]_{0}^{\sqrt{2}} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{0}^{\sqrt{2}}$$

$$= \frac{1}{4} \left[\sqrt{2}\sqrt{9-8} + \frac{9}{2} \sin^{-1} \frac{2\sqrt{2}}{3} \right] - \frac{1}{12} \left(\sqrt{2} \right)^{3}$$

$$= \frac{\sqrt{2}}{4} + \frac{9}{8} \sin^{-1} \frac{2\sqrt{2}}{3} - \frac{\sqrt{2}}{6}$$

$$= \frac{\sqrt{2}}{12} + \frac{9}{8} \sin^{-1} \frac{2\sqrt{2}}{3}$$

$$= \frac{1}{2} \left(\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} \right)$$

Therefore, the required area OBCDO is

$$\left(2 \times \frac{1}{2} \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} \right] \right) = \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} \right] \text{ units}$$

Q 2:

Find the area bounded by curves $(x - 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$

Answer:

The area bounded by the curves, $(x - 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$, is represented by the shaded area as

On solving the equations, $(x-1)^2+y^2=1$ and $x^2+y^2=1$, we obtain the point of intersection as $A\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ and $B\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

It can be observed that the required area is symmetrical about x-axis.

$$\therefore$$
 Area OBCAO = 2 × Area OCAO

We join AB, which intersects OC at M, such that AM is perpendicular to OC.

The coordinates of M are $\left(\frac{1}{2},0\right)$.

$$\Rightarrow Area \ OCAO = Area \ OMAO + Area \ MCAM$$

$$= \left[\int_{0}^{\frac{1}{2}} \sqrt{1 - (x - 1)^{2}} \, dx + \int_{\frac{1}{2}}^{1} \sqrt{1 - x^{2}} \, dx \right]$$

$$= \left[\frac{x - 1}{2} \sqrt{1 - (x - 1)^{2}} + \frac{1}{2} \sin^{-1}(x - 1) \right]_{0}^{\frac{1}{2}} + \left[\frac{x}{2} \sqrt{1 - x^{2}} + \frac{1}{2} \sin^{-1}x \right]_{\frac{1}{2}}^{1}$$

$$= \left[-\frac{1}{4} \sqrt{1 - \left(-\frac{1}{2} \right)^{2}} + \frac{1}{2} \sin^{-1}\left(\frac{1}{2} - 1 \right) - \frac{1}{2} \sin^{-1}(-1) \right] +$$

$$\left[\frac{1}{2} \sin^{-1}(1) - \frac{1}{4} \sqrt{1 - \left(\frac{1}{2} \right)^{2}} - \frac{1}{2} \sin^{-1}\left(\frac{1}{2} \right) \right]$$

$$= \left[-\frac{\sqrt{3}}{8} + \frac{1}{2} \left(-\frac{\pi}{6} \right) - \frac{1}{2} \left(-\frac{\pi}{2} \right) \right] + \left[\frac{1}{2} \left(\frac{\pi}{2} \right) - \frac{\sqrt{3}}{8} - \frac{1}{2} \left(\frac{\pi}{6} \right) \right]$$

$$= \left[-\frac{\sqrt{3}}{4} - \frac{\pi}{12} + \frac{\pi}{4} + \frac{\pi}{4} - \frac{\pi}{12} \right]$$

$$= \left[-\frac{\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2} \right]$$

Therefore, required area OBCAO =
$$2 \times \left(\frac{2\pi}{6} - \frac{\sqrt{3}}{4}\right) = \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$$
 units

 $=\left[\frac{2\pi}{6}-\frac{\sqrt{3}}{4}\right]$

Q 3:

Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3 Answer:

The area bounded by the curves, $y = x^2 + 2$, y = x, x = 0, and x = 3, is represented by the shaded area OCBAO as

Then, Area OCBAO = Area ODBAO - Area ODCO

$$= \int_0^3 (x^2 + 2) dx - \int_0^3 x dx$$

$$= \left[\frac{x^3}{3} + 2x \right]_0^3 - \left[\frac{x^2}{2} \right]_0^3$$

$$= [9+6] - \left[\frac{9}{2} \right]$$

$$= 15 - \frac{9}{2}$$

$$= \frac{21}{2} \text{ units}$$

Q 4:

Using integration finds the area of the region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Answer:

BL and CM are drawn perpendicular to x-axis.

It can be observed in the following figure that,

Area (
$$\triangle$$
ACB) = Area (ALBA) + Area (BLMCB) - Area (AMCA) ... (1)

Equation of line segment AB is

$$y-0=\frac{3-0}{1+1}(x+1)$$

$$y = \frac{3}{2}(x+1)$$

$$\therefore \text{Area}(\text{ALBA}) = \int_{1}^{1} \frac{3}{2}(x+1) dx = \frac{3}{2} \left[\frac{x^{2}}{2} + x \right]_{1}^{1} = \frac{3}{2} \left[\frac{1}{2} + 1 - \frac{1}{2} + 1 \right] = 3 \text{ units}$$

Equation of line segment BC is

$$y-3=\frac{2-3}{3-1}(x-1)$$

$$y = \frac{1}{2} \left(-x + 7 \right)$$

$$\therefore \text{ Area (BLMCB)} = \int_{1}^{3} \frac{1}{2} (-x+7) dx = \frac{1}{2} \left[-\frac{x^{2}}{2} + 7x \right]_{1}^{3} = \frac{1}{2} \left[-\frac{9}{2} + 21 + \frac{1}{2} - 7 \right] = 5 \text{ units}$$

Equation of line segment AC is

$$y-0=\frac{2-0}{3+1}(x+1)$$

$$y = \frac{1}{2}(x+1)$$

$$\therefore \text{Area}(\text{AMCA}) = \frac{1}{2} \int_{-1}^{3} (x+1) dx = \frac{1}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{3} = \frac{1}{2} \left[\frac{9}{2} + 3 - \frac{1}{2} + 1 \right] = 4 \text{ units}$$

Therefore, from equation (1), we obtain

Area (
$$\triangle ABC$$
) = $(3 + 5 - 4) = 4$ units

Q 5:

Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Answer:

The equations of sides of the triangle are y = 2x + 1, y = 3x + 1, and x = 4. On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C (4, 9).

It can be observed that,

Area (
$$\Delta$$
ACB) = Area (OLBAO) -Area (OLCAO)
= $\int_0^4 (3x+1) dx - \int_0^4 (2x+1) dx$
= $\left[\frac{3x^2}{2} + x\right]_0^4 - \left[\frac{2x^2}{2} + x\right]_0^4$
= $(24+4) - (16+4)$
= $28-20$
= 8 units

Q 6:

Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

D.
$$2(n + 2)$$

Answer:

The smaller area enclosed by the circle, $x^2 + y^2 = 4$, and the line, x + y = 2, is represented by the shaded area ACBA as

It can be observed that,

Area ACBA = Area OACBO - Area (Δ OAB)

$$= \int_0^2 \sqrt{4 - x^2} \, dx - \int_0^2 (2 - x) \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2 - \left[2x - \frac{x^2}{2} \right]_0^2$$

$$= \left[2 \cdot \frac{\pi}{2} \right] - \left[4 - 2 \right]$$

$$= (\pi - 2) \text{ units}$$

Thus, the correct answer is B.

Q 7:

Area lying between the curve $y^2 = 4x$ and y = 2x is

A.
$$\frac{2}{3}$$

c.
$$\frac{1}{4}$$
 D. $\frac{3}{4}$

Answer:

The area lying between the curve, $y^2 = 4x$ and y = 2x, is represented by the shaded area OBAO as

The points of intersection of these curves are O (0, 0) and A (1, 2). We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).

∴ Area OBAO = Area (
$$\triangle$$
OCA) - Area (OCABO)

$$= \int_0^1 2x \, dx - \int_0^1 2\sqrt{x} \, dx$$

$$= 2\left[\frac{x^2}{2}\right]_0^1 - 2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^1$$

$$= \left|1 - \frac{4}{3}\right|$$

$$= \left|-\frac{1}{3}\right|$$

$$= \frac{1}{3} \text{ units}$$

Thus, the correct answer is B.

Miscellaneous Solutions

Q 1:

Find the area under the given curves and given lines:

(i)
$$y = x^2$$
, $x = 1$, $x = 2$ and x-axis

(ii)
$$y = x^4$$
, $x = 1$, $x = 5$ and x -axis

Answer

i. The required area is represented by the shaded area ADCBA as

Area ADCBA =
$$\int_{1}^{2} y dx$$

= $\int_{1}^{2} x^{2} dx$
= $\left[\frac{x^{3}}{3}\right]_{1}^{2}$
= $\frac{8}{3} - \frac{1}{3}$
= $\frac{7}{3}$ units

ii. The required area is represented by the shaded area ADCBA as

Area ADCBA =
$$\int_{1}^{5} x^{4} dx$$

= $\left[\frac{x^{5}}{5}\right]_{1}^{5}$
= $\frac{(5)^{5}}{5} - \frac{1}{5}$
= $(5)^{4} - \frac{1}{5}$
= $625 - \frac{1}{5}$
= 624.8 units

Q 2:

Find the area between the curves y = x and $y = x^2$

Answer

The required area is represented by the shaded area OBAO as

The points of intersection of the curves, y = x and $y = x^2$, is A (1, 1). We draw AC perpendicular to x-axis.

.. Area (OBAO) = Area (ΔΟCA) – Area (OCABO) ... (1)
$$= \int_0^1 x \, dx - \int_0^1 x^2 \, dx$$

$$= \left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1$$

$$=\frac{1}{2}-\frac{1}{3}$$

$$=\frac{1}{6}$$
 units

Q 3:

Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4

Answer:

The area in the first quadrant bounded by $y = 4x^2$, x = 0, y = 1, and y = 4 is represented by the shaded area ABCDA as

$$\therefore \text{ Area ABCD} = \int_1^4 x \, dx$$

$$= \int_1^4 \frac{\sqrt{y}}{2} dx$$

$$= \frac{1}{2} \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_1^4$$

$$= \frac{1}{3} \left[(4)^{\frac{3}{2}} - 1 \right]$$

$$= \frac{1}{3} [8 - 1]$$

$$= \frac{7}{3} \text{ units}$$

Q 4:

Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$ Answer:

The given equation is y = |x+3|

The corresponding values of x and y are given in the following table.

x	- 6	- 5	- 4	- 3	- 2	- 1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of y = |x+3| as follows.

It is known that, $(x+3) \le 0$ for $-6 \le x \le -3$ and $(x+3) \ge 0$ for $-3 \le x \le 0$

$$\therefore \int_{-6}^{0} |(x+3)| dx = -\int_{-6}^{-3} (x+3) dx + \int_{-3}^{0} (x+3) dx$$

$$= -\left[\frac{x^{2}}{2} + 3x \right]_{-6}^{-3} + \left[\frac{x^{2}}{2} + 3x \right]_{-3}^{0}$$

$$= -\left[\left(\frac{(-3)^{2}}{2} + 3(-3) \right) - \left(\frac{(-6)^{2}}{2} + 3(-6) \right) \right] + \left[0 - \left(\frac{(-3)^{2}}{2} + 3(-3) \right) \right]$$

$$= -\left[-\frac{9}{2} \right] - \left[-\frac{9}{2} \right]$$

$$= 9$$

Q 5:

Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$ Answer:

The graph of $y = \sin x$ can be drawn as

∴ Required area = Area OABO + Area BCDB

$$= \int_0^{\pi} \sin x \, dx + \left| \int_{\pi}^{2\pi} \sin x \, dx \right|$$

$$= \left[-\cos x \right]_0^{\pi} + \left| \left[-\cos x \right]_{\pi}^{2\pi} \right|$$

$$= \left[-\cos \pi + \cos 0 \right] + \left| -\cos 2\pi + \cos \pi \right|$$

$$= 1 + 1 + \left| \left(-1 - 1 \right) \right|$$

$$= 2 + \left| -2 \right|$$

$$= 2 + 2 = 4 \text{ units}$$

Q 6:

Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mxAnswer:

The area enclosed between the parabola, $y^2 = 4ax$, and the line, y = mx, is represented by the shaded area OABO as

The points of intersection of both the curves are (0, 0) and $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$. We draw AC perpendicular to x-axis.

Q 7:

Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12Answer:

The area enclosed between the parabola, $4y = 3x^2$, and the line, 2y = 3x + 12, is represented by the shaded area OBAO as

The points of intersection of the given curves are A (-2, 3) and (4, 12). We draw AC and BD perpendicular to x-axis.

∴ Area OBAO = Area CDBA - (Area ODBO + Area OACO)

$$= \int_{2}^{4} \frac{1}{2} (3x+12) dx - \int_{2}^{4} \frac{3x^{2}}{4} dx$$

$$= \frac{1}{2} \left[\frac{3x^{2}}{2} + 12x \right]_{-2}^{4} - \frac{3}{4} \left[\frac{x^{3}}{3} \right]_{-2}^{4}$$

$$= \frac{1}{2} [24 + 48 - 6 + 24] - \frac{1}{4} [64 + 8]$$

$$= \frac{1}{2} [90] - \frac{1}{4} [72]$$

$$= 45 - 18$$

$$= 27 \text{ units}$$

Q 8:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line

$$\frac{x}{3} + \frac{y}{2} = 1$$

Answer:

The area of the smaller region bounded by the ellipse, $\frac{x^2}{9} + \frac{y^2}{4} = 1$, and the line,

 $\frac{x}{3} + \frac{y}{2} = 1$, is represented by the shaded region BCAB as

∴ Area BCAB = Area (OBCAO) - Area (OBAO)

$$= \int_{0}^{3} 2\sqrt{1 - \frac{x^{2}}{9}} dx - \int_{0}^{3} 2\left(1 - \frac{x}{3}\right) dx$$

$$= \frac{2}{3} \left[\int_{0}^{3} \sqrt{9 - x^{2}} dx\right] - \frac{2}{3} \int_{0}^{3} (3 - x) dx$$

$$= \frac{2}{3} \left[\frac{x}{2}\sqrt{9 - x^{2}} + \frac{9}{2}\sin^{-1}\frac{x}{3}\right]_{0}^{3} - \frac{2}{3} \left[3x - \frac{x^{2}}{2}\right]_{0}^{3}$$

$$= \frac{2}{3} \left[\frac{9}{2}\left(\frac{\pi}{2}\right)\right] - \frac{2}{3} \left[9 - \frac{9}{2}\right]$$

$$= \frac{2}{3} \left[\frac{9\pi}{4} - \frac{9}{2}\right]$$

$$= \frac{2}{3} \left[\frac{9\pi}{4} - \frac{9}{2}\right]$$

$$= \frac{2}{3} \times \frac{9}{4} (\pi - 2)$$

$$= \frac{3}{2} (\pi - 2) \text{ units}$$

Q 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$

Answer:

The area of the smaller region bounded by the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and the line,

 $\frac{x}{a} + \frac{y}{b} = 1$, is represented by the shaded region BCAB as

· Area BCAB = Area (OBCAO) - Area (OBAO)

$$= \int_{0}^{a} b \sqrt{1 - \frac{x^{2}}{a^{2}}} dx - \int_{0}^{a} b \left(1 - \frac{x}{a}\right) dx$$

$$= \frac{b}{a} \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx - \frac{b}{a} \int_{0}^{a} (a - x) dx$$

$$= \frac{b}{a} \left[\left\{ \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right\}_{0}^{a} - \left\{ ax - \frac{x^{2}}{2} \right\}_{0}^{a} \right]$$

$$= \frac{b}{a} \left[\left\{ \frac{a^{2}}{2} \left(\frac{\pi}{2} \right) \right\} - \left\{ a^{2} - \frac{a^{2}}{2} \right\} \right]$$

$$= \frac{b}{a} \left[\frac{a^{2}\pi}{4} - \frac{a^{2}}{2} \right]$$

$$= \frac{ba^{2}}{2a} \left[\frac{\pi}{2} - 1 \right]$$

$$= \frac{ab}{4} (\pi - 2)$$

Q 10:

Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and x-axis Answer:

The area of the region enclosed by the parabola, $x^2 = y$, the line, y = x + 2, and x-axis is represented by the shaded region OABCO as

The point of intersection of the parabola, $x^2 = y$, and the line, y = x + 2, is A (-1, 1).

: Area OABCO = Area (BCA) + Area COAC

$$= \int_{2}^{1} (x+2)dx + \int_{1}^{0} x^{2}dx$$

$$= \left[\frac{x^{2}}{2} + 2x\right]_{-2}^{-1} + \left[\frac{x^{3}}{3}\right]_{-1}^{0}$$

$$= \left[\frac{(-1)^{2}}{2} + 2(-1) - \frac{(-2)^{2}}{2} - 2(-2)\right] + \left[-\frac{(-1)^{3}}{3}\right]$$

$$= \left[\frac{1}{2} - 2 - 2 + 4 + \frac{1}{3}\right]$$

$$= \frac{5}{6} \text{ units}$$

Q 11:

Using the method of integration find the area bounded by the curve $\left|x\right|+\left|y\right|=1$

[**Hint:** the required region is bounded by lines x + y = 1, x - y = 1, -x + y = 1 and -x - y = 11]

Answer:

The area bounded by the curve, |x|+|y|=1 , is represented by the shaded region ADCB as

The curve intersects the axes at points A (0, 1), B (1, 0), C (0, -1), and D (-1, 0). It can be observed that the given curve is symmetrical about x-axis and y-axis.

$$\therefore \text{ Area ADCB} = 4 \times \text{ Area OBAO}$$

$$= 4 \int_0^1 (1-x) dx$$

$$= 4 \left(x - \frac{x^2}{2} \right)_0^1$$

$$= 4 \left[1 - \frac{1}{2} \right]$$

$$= 4 \left(\frac{1}{2} \right)$$

$$= 2 \text{ units}$$

Q 12:

Find the area bounded by curves $\{(x,y): y \ge x^2 \text{ and } y = |x|\}$ Answer:

The area bounded by the curves, $\{(x,y):y\geq x^2\text{ and }y=|x|\}$, is represented by the shaded region as

It can be observed that the required area is symmetrical about y-axis.

Required area =
$$2\left[\operatorname{Area}\left(\operatorname{OCAO}\right) - \operatorname{Area}\left(\operatorname{OCADO}\right)\right]$$

= $2\left[\int_0^1 x \, dx - \int_0^1 x^2 \, dx\right]$
= $2\left[\left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1\right]$
= $2\left[\frac{1}{2} - \frac{1}{3}\right]$
= $2\left[\frac{1}{6}\right] = \frac{1}{3}$ units

Q 13:

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A (2, 0), B (4, 5) and C (6, 3)

Answer:

The vertices of \triangle ABC are A (2, 0), B (4, 5), and C (6, 3).

Equation of line segment AB is

$$y - 0 = \frac{5 - 0}{4 - 2} (x - 2)$$

$$2y = 5x - 10$$

$$y = \frac{5}{2}(x-2)$$
 ...(1)

Equation of line segment BC is

$$y-5=\frac{3-5}{6-4}(x-4)$$

$$2y-10 = -2x+8$$

$$2y = -2x + 18$$

$$y = -x + 9$$
 ...(2)

Equation of line segment CA is

$$y-3=\frac{0-3}{2-6}(x-6)$$

$$-4y+12 = -3x+18$$

$$4y = 3x - 6$$

$$y = \frac{3}{4}(x-2)$$
 ...(3)

Area (
$$\triangle$$
ABC) = Area (ABLA) + Area (BLMCB) - Area (ACMA)
= $\int_{2}^{4} \frac{5}{2}(x-2) dx + \int_{4}^{6} (-x+9) dx - \int_{2}^{6} \frac{3}{4}(x-2) dx$
= $\frac{5}{2} \left[\frac{x^{2}}{2} - 2x \right]_{2}^{4} + \left[\frac{-x^{2}}{2} + 9x \right]_{4}^{6} - \frac{3}{4} \left[\frac{x^{2}}{2} - 2x \right]_{2}^{6}$
= $\frac{5}{2} \left[8 - 8 - 2 + 4 \right] + \left[-18 + 54 + 8 - 36 \right] - \frac{3}{4} \left[18 - 12 - 2 + 4 \right]$
= $5 + 8 - \frac{3}{4}(8)$
= $13 - 6$
= 7 units

Q 14:

Using the method of integration find the area of the region bounded by lines:

$$2x + y = 4$$
, $3x - 2y = 6$ and $x - 3y + 5 = 0$

Answer:

The given equations of lines are

$$2x + y = 4 \dots (1)$$

$$3x - 2y = 6 \dots (2)$$

And,
$$x - 3y + 5 = 0 ... (3)$$

The area of the region bounded by the lines is the area of \triangle ABC. AL and CM are the perpendiculars on x-axis.

Area (
$$\triangle$$
ABC) = Area (ALMCA) - Area (ALB) - Area (CMB)
= $\int_{1}^{1} \left(\frac{x+5}{3}\right) dx - \int_{1}^{2} (4-2x) dx - \int_{2}^{4} \left(\frac{3x-6}{2}\right) dx$
= $\frac{1}{3} \left[\frac{x^{2}}{2} + 5x\right]_{1}^{4} - \left[4x - x^{2}\right]_{1}^{2} - \frac{1}{2} \left[\frac{3x^{2}}{2} - 6x\right]_{2}^{4}$
= $\frac{1}{3} \left[8 + 20 - \frac{1}{2} - 5\right] - \left[8 - 4 - 4 + 1\right] - \frac{1}{2} \left[24 - 24 - 6 + 12\right]$
= $\left(\frac{1}{3} \times \frac{45}{2}\right) - (1) - \frac{1}{2}(6)$
= $\frac{15}{2} - 1 - 3$
= $\frac{15}{2} - 4 = \frac{15 - 8}{2} = \frac{7}{2}$ units

Q 15:

Find the area of the region $\{(x,y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$ Answer:

The area bounded by the curves, $\{(x,y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$, is represented as

The points of intersection of both the curves $\operatorname{are}\left(\frac{1}{2},\sqrt{2}\right)$ and $\left(\frac{1}{2},-\sqrt{2}\right)$.

The required area is given by OABCO.

It can be observed that area OABCO is symmetrical about x-axis.

:. Area OABCO = 2 × Area OBC

Area OBCO = Area OMC + Area MBC

$$= \int_0^{\frac{1}{2}} 2\sqrt{x} \, dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9 - 4x^2} \, dx$$
$$= \int_0^{\frac{1}{2}} 2\sqrt{x} \, dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{(3)^2 - (2x)^2} \, dx$$

Q 16:

Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

c.
$$\frac{15}{4}$$

B.
$$-\frac{15}{4}$$

D.
$$\frac{17}{4}$$

Answer:

Required area =
$$\int_{-2}^{1} y dx$$

The correct answer is D.

Q 17:

The area bounded by the curve $y=x\left|x\right|$, x-axis and the ordinates x=-1 and x=1 is given by

[Hint: $y = x^2$ if x > 0 and $y = -x^2$ if x < 0]

- **A.** 0
- **B.** $\frac{1}{3}$
- **c.** $\frac{2}{3}$
- **D.** $\frac{4}{3}$

Answer:

Required area = $\int_{-1}^{1} y dx$

$$= \int_{-1}^{1} x |x| dx$$

$$= \int_{-1}^{0} x^{2} dx + \int_{0}^{1} x^{2} dx$$

$$= \left[\frac{x^{3}}{3} \right]_{-1}^{0} + \left[\frac{x^{3}}{3} \right]_{0}^{1}$$

$$= -\left(-\frac{1}{3} \right) + \frac{1}{3}$$

$$= \frac{2}{3} \text{ units}$$

Thus, the correct answer is C.

Q 18:

The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is

A.
$$\frac{4}{3} \Big(4\pi - \sqrt{3} \, \Big)$$

B.
$$\frac{4}{3} \left(4\pi + \sqrt{3} \right)$$

c.
$$\frac{4}{3} (8\pi - \sqrt{3})$$

D.
$$\frac{4}{3} (4\pi + \sqrt{3})$$

Answer:

The given equations are

$$x^2 + y^2 = 16 \dots (1)$$

$$y^2 = 6x ... (2)$$

Area bounded by the circle and parabola

= 2[Area (OADO) + Area (ADBA)]
= 2[
$$\int_0^2 \sqrt{16x} dx + \int_2^4 \sqrt{16 - x^2} dx$$
]
= 2[$\int_0^2 \sqrt{6x} dx + \int_2^4 \sqrt{16 - x^2} dx$]
= 2[$\int_0^2 \sqrt{6x} dx + \int_2^4 \sqrt{16 - x^2} dx$]
= 2 $\int_0^2 \sqrt{6x} dx + \int_0^4 \sqrt{16 - x^2} dx + \int_0^4 \sqrt{6x} dx$]
= 2 $\int_0^2 \sqrt{6x} dx + \int_0^4 \sqrt{16 - x^2} dx + \int_0^4 \sqrt{6x} dx$]
= $\int_0^4 \sqrt{6x} dx + \int_0^4 \sqrt{16 - x^2} dx + \int_0^4 \sqrt{16 - x^2} dx + \int_0^4 \sqrt{16 - x^2} dx$]
= $\int_0^4 \sqrt{6x} dx + \int_0^4 \sqrt{16 - x^2} dx + \int_0^4 \sqrt$

 $=\frac{4}{3}\left(8\pi-\sqrt{3}\right)$ units

Thus, the correct answer is C.

Q 19:

The area bounded by the *y*-axis, $y = \cos x$ and $y = \sin x$ when $0 \le x \le \frac{\pi}{2}$

A.
$$2(\sqrt{2}-1)$$

B.
$$\sqrt{2}-1$$

c.
$$\sqrt{2} + 1$$

D.
$$\sqrt{2}$$

Answer:

The given equations are

$$y = \cos x \dots (1)$$

And,
$$y = \sin x ... (2)$$

Required area = Area (ABLA) + area (OBLO)

$$= \int_{\frac{1}{\sqrt{2}}}^{1} x dy + \int_{0}^{\frac{1}{\sqrt{2}}} x dy$$
$$= \int_{\frac{1}{\sqrt{2}}}^{1} \cos^{-1} y dy + \int_{0}^{\frac{1}{\sqrt{2}}} \sin^{-1} x dy$$

Integrating by parts, we obtain

$$= \left[y\cos^{-1}y - \sqrt{1 - y^2}\right]_{\frac{1}{\sqrt{2}}}^{1} + \left[x\sin^{-1}x + \sqrt{1 - x^2}\right]_{0}^{\frac{1}{\sqrt{2}}}$$

$$= \left[\cos^{-1}(1) - \frac{1}{\sqrt{2}}\cos^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sqrt{1 - \frac{1}{2}}\right] + \left[\frac{1}{\sqrt{2}}\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sqrt{1 - \frac{1}{2}} - 1\right]$$

$$= \frac{-\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1$$

$$= \frac{2}{\sqrt{2}} - 1$$

$$= \sqrt{2} - 1 \text{ units}$$

Thus, the correct answer is B.

Put
$$2x = t \Rightarrow dx = \frac{dt}{2}$$

When
$$x = \frac{3}{2}$$
, $t = 3$ and when $x = \frac{1}{2}$, $t = 1$
= $\int_0^{\frac{1}{2}} 2\sqrt{x} dx + \frac{1}{4} \int_1^3 \sqrt{(3)^2 - (t)^2} dt$

$$= 2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{1}{2}} + \frac{1}{4}\left[\frac{t}{2}\sqrt{9-t^{2}} + \frac{9}{2}\sin^{-1}\left(\frac{t}{3}\right)\right]_{1}^{3}$$

$$= 2\left[\frac{2}{3}\left(\frac{1}{2}\right)^{\frac{3}{2}}\right] + \frac{1}{4}\left[\left\{\frac{3}{2}\sqrt{9-(3)^{2}} + \frac{9}{2}\sin^{-1}\left(\frac{3}{3}\right)\right\} - \left\{\frac{1}{2}\sqrt{9-(1)^{2}} + \frac{9}{2}\sin^{-1}\left(\frac{1}{3}\right)\right\}\right]$$

$$= \frac{2}{3\sqrt{2}} + \frac{1}{4}\left[\left\{0 + \frac{9}{2}\sin^{-1}(1)\right\} - \left\{\frac{1}{2}\sqrt{8} + \frac{9}{2}\sin^{-1}\left(\frac{1}{3}\right)\right\}\right]$$

$$= \frac{\sqrt{2}}{3} + \frac{1}{4}\left[\frac{9\pi}{4} - \sqrt{2} - \frac{9}{2}\sin^{-1}\left(\frac{1}{3}\right)\right]$$

$$= \frac{\sqrt{2}}{3} + \frac{9\pi}{16} - \frac{\sqrt{2}}{4} - \frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right)$$

$$= \frac{9\pi}{16} - \frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right) + \frac{\sqrt{2}}{12}$$

Therefore, the required area is
$$\left[2\times\left(\frac{9\pi}{16}-\frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{12}\right)\right]=\frac{9\pi}{8}-\frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right)+\frac{1}{3\sqrt{2}} \text{ units}$$

