is sure !

Class 12 Maths NCERT Solutions Chapter - 7

Integrals - Exercise 7.1

Q 1:

$\sin 2 x$
Answer:
The anti derivative of $\sin 2 x$ is a function of x whose derivative is $\sin 2 x$. It is known that,
$\frac{d}{d x}(\cos 2 x)=-2 \sin 2 x$
$\Rightarrow \sin 2 x=-\frac{1}{2} \frac{d}{d x}(\cos 2 x)$
$\therefore \sin 2 x=\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x\right)$
Therefore, the anti derivative of $\sin 2 x$ is $-\frac{1}{2} \cos 2 x$

Q 2:

$\operatorname{Cos} 3 x$
Answer:
The anti derivative of $\cos 3 x$ is a function of x whose derivative is $\cos 3 x$.
It is known that,
$\frac{d}{d x}(\sin 3 x)=3 \cos 3 x$
$\Rightarrow \cos 3 x=\frac{1}{3} \frac{d}{d x}(\sin 3 x)$
$\therefore \cos 3 x=\frac{d}{d x}\left(\frac{1}{3} \sin 3 x\right)$

Therefore, the anti derivative of $\cos 3 x$ is $\frac{1}{3} \sin 3 x$.

Q 3:
$e^{2 x}$
Answer:
The anti derivative of $e^{2 x}$ is the function of x whose derivative is $e^{2 x}$.
It is known that,
$\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}$
$\Rightarrow e^{2 x}=\frac{1}{2} \frac{d}{d x}\left(e^{2 x}\right)$
$\therefore e^{2 x}=\frac{d}{d x}\left(\frac{1}{2} e^{2 x}\right)$

Therefore, the anti der vative of $e^{2 x}$ is $\frac{1}{2} e^{2 x}$
Q 4:
$(a x+b)^{2}$
Answer:
The anti derivative of $(a x+b)^{2}$ is the function of x whose derivat ve is $(a x+b)^{2}$ It is known that,
$\frac{d}{d x}(a x+b)^{3}=3 a(a x+b)^{2}$
$\Rightarrow(a x+b)^{2}=\frac{1}{3 a} \frac{d}{d x}(a x+b)^{3}$
$\therefore(a x+b)^{2}=\frac{d}{d x}\left(\frac{1}{3 a}(a x+b)^{3}\right)$

Therefore, the a nti der vative of $(a x+b)^{2}$ is $\frac{1}{3 a}(a x+b)^{3}$

Q 5:

$\sin 2 x-4 e^{3 x}$
Answer:
The anti derivative of $\left(\sin 2 x-4 e^{3 x}\right)$ is the function of x whose derivative s $\left(\sin 2 x-4 e^{3 x}\right)$

It is known that,

$$
\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)=\sin 2 x-4 e^{3 x}
$$

Therefore, the anti der vative of $\left(\sin 2 x-4 e^{3 x}\right)$ is $\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)$.

Q 6:
$\int\left(4 e^{3 x}+1\right) d x$
Answer:

$$
\begin{aligned}
& \int\left(4 e^{3 x}+1\right) d x \\
& =4 \int e^{3 x} d x+\int 1 d x \\
& =4\left(\frac{e^{3 x}}{3}\right)+x+\mathrm{C} \\
& =\frac{4}{3} e^{3 x}+x+\mathrm{C}
\end{aligned}
$$

Q 7:

$\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x$

Answer:

$$
\begin{aligned}
& \int x^{2}\left(1-\frac{1}{x^{2}}\right) d x \\
& =\int\left(x^{2}-1\right) d x \\
& =\int x^{2} d x-\int 1 d x \\
& =\frac{x^{3}}{3}-x+\mathrm{C}
\end{aligned}
$$

Q 8:
$\int\left(a x^{2}+b x+c\right) d x$
Answer:

$$
\begin{aligned}
& \int\left(a x^{2}+b x+c\right) d x \\
& =a \int x^{2} d x+b \int x d x+c \int 1 \cdot d x \\
& =a\left(\frac{x^{3}}{3}\right)+b\left(\frac{x^{2}}{2}\right)+c x+\mathrm{C} \\
& =\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x+\mathrm{C}
\end{aligned}
$$

Q 9:

$\int\left(2 x^{2}+e^{x}\right) d x$

Answer:

$$
\int\left(2 x^{2}+e^{x}\right) d x
$$

$$
=2 \int x^{2} d x+\int e^{x} d x
$$

$$
=2\left(\frac{x^{3}}{3}\right)+e^{x}+\mathrm{C}
$$

$$
=\frac{2}{3} x^{3}+e^{x}+\mathrm{C}
$$

Q 10:
$\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x$
Answer:

$$
\begin{aligned}
& \int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x \\
& =\int\left(x+\frac{1}{x}-2\right) d x \\
& =\int x d x+\int \frac{1}{x} d x-2 \int 1 \cdot d x \\
& =\frac{x^{2}}{2}+\log |x|-2 x+\mathrm{C}
\end{aligned}
$$

Q 11:
$\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$
Answer:
$\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$
$=\int\left(x+5-4 x^{-2}\right) d x$
$=\int x d x+5 \int 1 \cdot d x-4 \int x^{-2} d x$
$=\frac{x^{2}}{2}+5 x-4\left(\frac{x^{-1}}{-1}\right)+\mathrm{C}$
$=\frac{x^{2}}{2}+5 x+\frac{4}{x}+\mathrm{C}$

Q 12:
$\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x$

Answer:

$$
\begin{aligned}
& \int \frac{x^{3}+3 x+4}{\sqrt{x}} d x \\
& =\int\left(x^{\frac{5}{2}}+3 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}\right) d x \\
& =\frac{x^{\frac{7}{2}}}{\frac{7}{2}}+\frac{3\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\frac{4\left(x^{\frac{1}{2}}\right)}{\frac{1}{2}}+\mathrm{C} \\
& =\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 x^{\frac{1}{2}}+\mathrm{C} \\
& =\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 \sqrt{x}+\mathrm{C}
\end{aligned}
$$

Q 13:
$\int \frac{x^{3}-x^{2}+x-1}{x-1} d x$
Answer:
$\int \frac{x^{3}-x^{2}+x-1}{x-1} d x$
On dividing, we obtain
$=\int\left(x^{2}+1\right) d x$
$=\int x^{2} d x+\int 1 d x$
$=\frac{x^{3}}{3}+x+\mathrm{C}$

Q 14:

$\int(1-x) \sqrt{x} d x$

Answer:

$$
\begin{aligned}
& \int(1-x) \sqrt{x} d x \\
= & \int\left(\sqrt{x}-x^{\frac{3}{2}}\right) d x \\
= & \int x^{\frac{1}{2}} d x-\int x^{\frac{3}{2}} d x \\
= & \frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+\mathrm{C} \\
= & \frac{2}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}+\mathrm{C}
\end{aligned}
$$

Q 15:
$\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x$
Answer:

$$
\begin{aligned}
& \int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x \\
& =\int\left(3 x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+3 x^{\frac{1}{2}}\right) d x \\
& =3 \int x^{\frac{5}{2}} d x+2 \int x^{\frac{3}{2}} d x+3 \int x^{\frac{1}{2}} d x \\
& =3\left(\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right)+2\left(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)+3 \frac{\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\mathrm{C} \\
& =\frac{6}{7} x^{\frac{7}{2}}+\frac{4}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

Q 16:

$\int\left(2 x-3 \cos x+e^{x}\right) d x$
Answer:
$\int\left(2 x-3 \cos x+e^{x}\right) d x$
$=2 \int x d x-3 \int \cos x d x+\int e^{x} d x$
$=\frac{2 x^{2}}{2}-3(\sin x)+e^{x}+\mathrm{C}$
$=x^{2}-3 \sin x+e^{x}+\mathrm{C}$

Q 17:

$\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$
Answer:

$$
\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x
$$

$$
=2 \int x^{2} d x-3 \int \sin x d x+5 \int x^{\frac{1}{2}} d x
$$

$$
=\frac{2 x^{3}}{3}-3(-\cos x)+5\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}
$$

$$
=\frac{2}{3} x^{3}+3 \cos x+\frac{10}{3} x^{\frac{3}{2}}+\mathrm{C}
$$

Q 18:

$\int \sec x(\sec x+\tan x) d x$

Answer:

$\int \sec x(\sec x+\tan x) d x$
$=\int\left(\sec ^{2} x+\sec x \tan x\right) d x$
$=\int \sec ^{2} x d x+\int \sec x \tan x d x$
$=\tan x+\sec x+\mathrm{C}$

Q 19:

$\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$
Answer:

$$
\int \frac{\sec ^{2} x}{\operatorname{cosec} x} d x
$$

$=\int \frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}} d x$
$=\int \frac{\sin ^{2} x}{\cos ^{2} x} d x$
$=\int \tan ^{2} x d x$
$=\int\left(\sec ^{2} x-1\right) d x$
$=\int \sec ^{2} x d x-\int 1 d x$
$=\tan x-x+\mathrm{C}$

Q 20:

$$
\int \frac{2-3 \sin x}{\cos ^{2} x} d x
$$

Answer:

$$
\begin{aligned}
& \int \frac{2-3 \sin x}{\cos ^{2} x} d x \\
= & \int\left(\frac{2}{\cos ^{2} x}-\frac{3 \sin x}{\cos ^{2} x}\right) d x \\
= & \int 2 \sec ^{2} x d x-3 \int \tan x \sec x d x \\
= & 2 \tan x-3 \sec x+\mathrm{C}
\end{aligned}
$$

Q 21:

The anti derivative of $\sqrt{x}+\frac{1}{\sqrt{x}}$ equals
(A) $\frac{1}{3} x^{\frac{1}{3}}+2 x^{\frac{1}{2}}+$ C(B) $\frac{2}{3} x^{\frac{2}{3}}+\frac{1}{2} x^{2}+$ C
(C) $\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+\mathrm{C}$ (D) $\frac{3}{2} x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{1}{2}}+\mathrm{C}$

Answer:

$$
\begin{aligned}
& \left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x \\
& =\int x^{\frac{1}{2}} d x+\int x^{-\frac{1}{2}} d x \\
& =\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{C} \\
& =\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answers C

Q 22:

If $\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$ such that $f(2)=0$, then $f(x)$ is
(A) $x^{4}+\frac{1}{x^{3}}-\frac{129}{8}$ (B) $x^{3}+\frac{1}{x^{4}}+\frac{129}{8}$
(C) $x^{4}+\frac{1}{x^{3}}+\frac{129}{8}$ (D) $x^{3}+\frac{1}{x^{4}}-\frac{129}{8}$

Answer
It is given that,
$\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$
\therefore Anti der vative of $4 x^{3}-\frac{3}{x^{4}}=f(x)$

$$
\begin{aligned}
& \therefore f(x)=\int 4 x^{3}-\frac{3}{x^{4}} d x \\
& f(x)=4 \int x^{3} d x-3 \int\left(x^{-4}\right) d x \\
& f(x)=4\left(\frac{x^{4}}{4}\right)-3\left(\frac{x^{-3}}{-3}\right)+\mathrm{C} \\
& \quad f(x)=x^{4}+\frac{1}{x^{3}}+\mathrm{C}
\end{aligned}
$$

Also,

$f(2)=0$
$\therefore f(2)=(2)^{4}+\frac{1}{(2)^{3}}+\mathrm{C}=0$
$\Rightarrow 16+\frac{1}{8}+C=0$
$\Rightarrow \mathrm{C}=-\left(16+\frac{1}{8}\right)$
$\Rightarrow \mathrm{C}=\frac{-129}{8}$
$\therefore f(x)=x^{4}+\frac{1}{x^{3}}-\frac{129}{8}$
Hence, the correct Answer is A.

Exercise 7.2

Q 1:
$\frac{2 x}{1+x^{2}}$
Answer:
Let $1+x^{2}=t$
$\therefore 2 x d x=d t$
$\Rightarrow \int \frac{2 x}{1+x^{2}} d x=\int_{t}^{1} d t$
$=\log |t|+C$
$=\log \left|1+x^{2}\right|+\mathrm{C}$
$=\log \left(1+x^{2}\right)+C$

Q 2:
$\frac{(\log x)^{2}}{x}$
Answer:
Let $\log |x|=t$
$\therefore \frac{1}{x} d x=d t$
$\Rightarrow \int \frac{(\log |x|)^{2}}{x} d x=\int t^{2} d t$
$=\frac{t^{3}}{3}+\mathrm{C}$
$=\frac{(\log |x|)^{3}}{3}+\mathrm{C}$
$\Rightarrow \int \frac{1}{x(1+\log x)} d x=\int \frac{1}{t} d t$
$=\log |t|+\mathrm{C}$
$=\log |1+\log x|+\mathrm{C}$

Q 4:

$\sin x \cdot \sin (\cos x)$
Answer:

```
sin}x\cdot\operatorname{sin}(\operatorname{cos}x
```

Let $\cos x=t$
$\therefore-\sin x d x=d t$
$\Rightarrow \int \sin x \cdot \sin (\cos x) d x=-\int \sin t d t$
$=-[-\cos t]+\mathrm{C}$
$=\cos t+\mathrm{C}$
$=\cos (\cos x)+C$

Q 5:

$$
\sin (a x+b) \cos (a x+b)
$$

Answer:

$$
\begin{aligned}
& \sin (a x+b) \cos (a x+b)=\frac{2 \sin (a x+b) \cos (a x+b)}{2}=\frac{\sin 2(a x+b)}{2} \\
& \text { Let } 2(a x+b)=t
\end{aligned}
$$

$$
\therefore 2 a d x=d t
$$

$$
\begin{aligned}
\Rightarrow \int \frac{\sin 2(a x+b)}{2} d x & =\frac{1}{2} \int \frac{\sin t d t}{2 a} \\
& =\frac{1}{4 a}[-\cos t]+\mathrm{C} \\
& =\frac{-1}{4 a} \cos 2(a x+b)+\mathrm{C}
\end{aligned}
$$

Q 6:
$\sqrt{a x+b}$
Answer
Let $a x+b=t$
$\Rightarrow a d x=d t$
$\therefore d x=\frac{1}{a} d t$
$\Rightarrow \int(a x+b)^{\frac{1}{2}} d x=\frac{1}{a} \int t^{\frac{1}{2}} d t$
$=\frac{1}{a}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
$=\frac{2}{3 a}(a x+b)^{\frac{3}{2}}+\mathrm{C}$

Q 7:

$x \sqrt{x+2}$
Answer:
Let $(x+2)=t$
$\therefore d x=d t$
$\Rightarrow \int x \sqrt{x+2} d x=\int(t-2) \sqrt{t} d t$
$=\int\left(t^{\frac{3}{2}}-2 t^{\frac{1}{2}}\right) d t$
$=\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t$
$=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
$=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+\mathrm{C}$
$=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C$

Q 8:
$x \sqrt{1+2 x^{2}}$
Answer:
Let $1+2 x^{2}=t$
$\therefore 4 x d x=d t$

$$
\begin{aligned}
\Rightarrow \int x \sqrt{1+2 x^{2}} d x & =\int \frac{\sqrt{t} d t}{4} \\
& =\frac{1}{4} \int t^{\frac{1}{2}} d t \\
& =\frac{1}{4}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{1}{6}\left(1+2 x^{2}\right)^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

Q 9:
$(4 x+2) \sqrt{x^{2}+x+1}$
Answer:
Let $x^{2}+x+1=t$
$\therefore(2 x+1) d x=d t$
$\int(4 x+2) \sqrt{x^{2}+x+1} d x$
$=\int 2 \sqrt{t} d t$
$=2 \int \sqrt{t} d t$
$=2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
$=\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\mathrm{C}$

Q 10:

$$
\frac{1}{x-\sqrt{x}}=
$$

Answer
$\frac{1}{x-\sqrt{x}}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}$
Let $(\sqrt{x}-1)=t$
$\therefore \quad \frac{1}{2 \sqrt{ } x} d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)} d x=\int \frac{2}{t} d t$
$=2 \log |t|+\mathrm{C}$
$=2 \log |\sqrt{x}-1|+\mathrm{C}$

Q 10:

$\frac{1}{x-\sqrt{x}}$
Answer:
$\frac{1}{x-\sqrt{x}}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}$
Let $(\sqrt{x}-1)=t$
$\therefore \frac{1}{2 \sqrt{x}} d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)} d x=\int \frac{2}{t} d t$
$=2 \log |t|+C$
$=2 \log |\sqrt{x}-1|+\mathrm{C}$

Q 11:
$\frac{x}{\sqrt{x+4}}, x>0$
Answer:
Let $x+4=t$
$\therefore d x=d t$

$$
\begin{aligned}
\int \frac{x}{\sqrt{x+4}} d x & =\int \frac{(t-4)}{\sqrt{t}} d t \\
& =\int\left(\sqrt{t}-\frac{4}{\sqrt{t}}\right) d t \\
& =\frac{t^{\frac{3}{2}}}{\frac{3}{2}}-4\left(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right)+\mathrm{C} \\
& =\frac{2}{3}(t)^{\frac{3}{2}}-8(t)^{\frac{1}{2}}+\mathrm{C} \\
& =\frac{2}{3} t \cdot t^{\frac{1}{2}}-8 t^{\frac{1}{2}}+\mathrm{C} \\
& =\frac{2}{3} t^{\frac{1}{2}}(t-12)+\mathrm{C} \\
& =\frac{2}{3}(x+4)^{\frac{1}{2}}(x+4-12)+\mathrm{C} \\
& =\frac{2}{3} \sqrt{x+4}(x-8)+\mathrm{C}
\end{aligned}
$$

Q 12:
$\left(x^{3}-1\right)^{\frac{1}{3}} x^{5}$

Answer:
Let $\left(x^{3}-1\right)=\mathrm{t}$
$\therefore x^{3} d x=d t$
$\Rightarrow \int\left(x^{3}-1\right)^{\frac{1}{3}} x^{5} d x=\int\left(x^{3}-1\right)^{\frac{1}{3}} x^{3} \cdot x^{2} d x$
$=\int t^{\frac{1}{3}}(t+1) \frac{d t}{3}$
$=\frac{1}{3} \int\left(t^{\frac{4}{3}}+t^{\frac{1}{3}}\right) d t$
$=\frac{1}{3}\left[\frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}}\right]+\mathrm{C}$
$=\frac{1}{3}\left[\frac{3}{7} t^{\frac{7}{3}}+\frac{3}{4} t^{\frac{4}{3}}\right]+\mathrm{C}$
$=\frac{1}{7}\left(x^{3}-1\right)^{\frac{7}{3}}+\frac{1}{4}\left(x^{3}-1\right)^{\frac{4}{3}}+\mathrm{C}$

Q 13:
$\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}$
Answer
Let $2+3 x^{3}=t$
$\therefore 9 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{x^{2}}{\left(2+3 x^{3}\right)^{3}} d x & =\frac{1}{9} \int \frac{d t}{(t)^{3}} \\
& =\frac{1}{9}\left[\frac{t^{-2}}{-2}\right]+\mathrm{C} \\
& =\frac{-1}{18}\left(\frac{1}{t^{2}}\right)+\mathrm{C} \\
& =\frac{-1}{18\left(2+3 x^{3}\right)^{2}}+\mathrm{C}
\end{aligned}
$$

Q 14:

$$
\frac{1}{x(\log x)^{m}}, x>0
$$

Answer:
Let $\log x=t$

$$
\therefore \frac{1}{x} d x=d t
$$

$$
\Rightarrow \int \frac{1}{x(\log x)^{m}} d x=\int \frac{d t}{(t)^{m}}
$$

$$
=\left(\frac{t^{-m+1}}{1-m}\right)+\mathrm{C}
$$

$$
=\frac{(\log x)^{1-m}}{(1-m)}+\mathrm{C}
$$

Q 15:

$\frac{x}{9-4 x^{2}}$
Answer:

$$
\text { Let } 9-4 x^{2}=t
$$

$\therefore-8 x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{x}{9-4 x^{2}} d x & =\frac{-1}{8} \int \frac{1}{t} d t \\
& =\frac{-1}{8} \log |t|+\mathrm{C} \\
& =\frac{-1}{8} \log \left|9-4 x^{2}\right|+\mathrm{C}
\end{aligned}
$$

Q 16:

$e^{2 x+3}$
Answer:
Let $2 x+3=t$
$\therefore 2 d x=d t$

$$
\begin{aligned}
\Rightarrow \int e^{2 x+3} d x & =\frac{1}{2} \int e^{t} d t \\
& =\frac{1}{2}\left(e^{t}\right)+\mathrm{C} \\
& =\frac{1}{2} e^{(2 x+3)}+\mathrm{C}
\end{aligned}
$$

Q 17:

$\frac{x}{e^{x^{2}}}$
Answer:
Let $x^{2}=t$
$\therefore 2 x d x=d t$
$\Rightarrow \int \frac{x}{e^{x^{2}}} d x=\frac{1}{2} \int \frac{1}{e^{t}} d t$
$=\frac{1}{2} \int e^{-t} d t$
$=\frac{1}{2}\left(\frac{e^{-t}}{-1}\right)+\mathrm{C}$
$=-\frac{1}{2} e^{-x^{2}}+\mathrm{C}$
$=\frac{-1}{2 e^{x^{2}}}+\mathrm{C}$

Q 18:
$\frac{e^{\tan ^{-1} x}}{1+x^{2}}$
Answer:
Let $\tan ^{-1} x=t$
$\therefore \frac{1}{1+x^{2}} d x=d t$
$\Rightarrow \int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x=\int e^{t} d t$
$=e^{t}+\mathrm{C}$
$=e^{\tan ^{-1} x}+\mathrm{C}$

Q 19:
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Answer:
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Dividing numerator and denominator by e^{x}, we obtain

$$
\begin{aligned}
& \frac{\frac{\left(e^{2 x}-1\right)}{e^{x}}}{\frac{\left(e^{2 x}+1\right)}{e^{x}}}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \text { Let } e^{x}+e^{-x}=t \\
& \therefore\left(e^{x}-e^{-x}\right) d x=d t \\
& \Rightarrow \int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x \\
& =\int \frac{d t}{t} \\
& =\log |t|+\mathrm{C} \\
& =\log \left|e^{x}+e^{-x}\right|+\mathrm{C}
\end{aligned}
$$

Q 20:
$\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}$
Answer:
Let $e^{2 x}+e^{-2 x}=t$
$\therefore\left(2 e^{2 x}-2 e^{-2 x}\right) d x=d t$

$$
\begin{aligned}
\Rightarrow 2\left(e^{2 x}-e^{-2 x}\right) d x & =d t \\
\Rightarrow \int\left(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\right) d x & =\int \frac{d t}{2 t} \\
& =\frac{1}{2} \int_{t}^{1} d t \\
& =\frac{1}{2} \log |t|+\mathrm{C} \\
& =\frac{1}{2} \log \left|e^{2 x}+e^{-2 x}\right|+\mathrm{C}
\end{aligned}
$$

Q 21:
$\tan ^{2}(2 x-3)$
Answer:
$\tan ^{2}(2 x-3)=\sec ^{2}(2 x-3)-1$
Let $2 x-3=t$
$\therefore 2 d x=d t$

$$
\begin{aligned}
\Rightarrow \int \tan ^{2}(2 x-3) d x & =\int\left[\left(\sec ^{2}(2 x-3)\right)-1\right] d x \\
& =\frac{1}{2} \int\left(\sec ^{2} t\right) d t-\int 1 d x \\
& =\frac{1}{2} \int \sec ^{2} t d t-\int 1 d x \\
& =\frac{1}{2} \tan t-x+\mathrm{C} \\
& =\frac{1}{2} \tan (2 x-3)-x+\mathrm{C}
\end{aligned}
$$

Q 22:
$\sec ^{2}(7-4 x)$
Answer:
Let $7-4 x=t$
$\therefore-4 d x=d t$

$$
\begin{aligned}
\therefore \int \sec ^{2}(7-4 x) d x & =\frac{-1}{4} \int \sec ^{2} t d t \\
& =\frac{-1}{4}(\tan t)+\mathrm{C} \\
& =\frac{-1}{4} \tan (7-4 x)+\mathrm{C}
\end{aligned}
$$

Q 23:
$\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$
Answer:
Let $\sin ^{-1} x=t$
$\therefore \frac{1}{\sqrt{1-x^{2}}} d x=d t$
$\Rightarrow \int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int t d t$
$=\frac{t^{2}}{2}+\mathrm{C}$
$=\frac{\left(\sin ^{-1} x\right)^{2}}{2}+\mathrm{C}$

Q 24:

$$
\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}
$$

Answer:

$$
\begin{aligned}
& \frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}=\frac{2 \cos x-3 \sin x}{2(3 \cos x+2 \sin x)} \\
& \text { Let } 3 \cos x+2 \sin x=t
\end{aligned}
$$

$$
\therefore(-3 \sin x+2 \cos x) d x=d t
$$

$$
\int \frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x} d x=\int \frac{d t}{2 t}
$$

$$
=\frac{1}{2} \int \frac{1}{t} d t
$$

$$
=\frac{1}{2} \log |t|+\mathrm{C}
$$

$$
=\frac{1}{2} \log |2 \sin x+3 \cos x|+\mathrm{C}
$$

Q 25:
$\frac{1}{\cos ^{2} x(1-\tan x)^{2}}$
Answer:

$$
\begin{aligned}
& \frac{1}{\cos ^{2} x(1-\tan x)^{2}}
\end{aligned}=\frac{\sec ^{2} x}{(1-\tan x)^{2}}
$$

Q 26:
$\frac{\cos \sqrt{x}}{\sqrt{x}}$
Answer:
Let $\sqrt{x}=t$
$\therefore \frac{1}{2 \sqrt{x}} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x & =2 \int \cos t d t \\
& =2 \sin t+\mathrm{C} \\
& =2 \sin \sqrt{x}+\mathrm{C}
\end{aligned}
$$

Q 27:
$\sqrt{\sin 2 x} \cos 2 x$
Answer:
Let $\sin 2 x=t$
$\therefore 2 \cos 2 x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \sqrt{\sin 2 x} \cos 2 x d x & =\frac{1}{2} \int \sqrt{t} d t \\
& =\frac{1}{2}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{1}{3} t^{\frac{3}{2}}+\mathrm{C} \\
& =\frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

Q 28:
$\frac{\cos x}{\sqrt{1+\sin x}}$
Answer:
Let $1+\sin x=t$
$\therefore \cos x d x=d t$
$\Rightarrow \int \frac{\cos x}{\sqrt{1+\sin x}} d x=\int \frac{d t}{\sqrt{t}}$

$$
\begin{aligned}
& =\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{C} \\
& =2 \sqrt{t}+\mathrm{C} \\
& =2 \sqrt{1+\sin x}+\mathrm{C}
\end{aligned}
$$

Q 29:

$\cot x \log \sin x$
Answer:
Let $\log \sin x=t$
$\Rightarrow \frac{1}{\sin x} \cdot \cos x d x=d t$
$\therefore \cot x d x=d t$
$\Rightarrow \int \cot x \log \sin x d x=\int t d t$

$$
\begin{aligned}
& =\frac{t^{2}}{2}+\mathrm{C} \\
& =\frac{1}{2}(\log \sin x)^{2}+\mathrm{C}
\end{aligned}
$$

Q 30:
$\frac{\sin x}{1+\cos x}$
Answer:
Let $1+\cos x=t$
$\therefore \quad \sin x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\sin x}{1+\cos x} d x & =\int-\frac{d t}{t} \\
& =-\log |t|+C \\
& =-\log |1+\cos x|+C
\end{aligned}
$$

Q 31:
$\frac{\sin x}{(1+\cos x)^{2}}$
Answer:
Let $1+\cos x=t$
$\therefore-\sin x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\sin x}{(1+\cos x)^{2}} d x & =\int-\frac{d t}{t^{2}} \\
& =-\int t^{-2} d t \\
& =\frac{1}{t}+\mathrm{C} \\
& =\frac{1}{1+\cos x}+\mathrm{C}
\end{aligned}
$$

Q 32:
$\frac{1}{1+\cot x}$
Answer:

$$
\text { Let } \begin{aligned}
I & =\int \frac{1}{1+\cot x} d x \\
& =\int \frac{1}{1+\frac{\cos x}{\sin x}} d x \\
& =\int \frac{\sin x}{\sin x+\cos x} d x \\
& =\frac{1}{2} \int \frac{2 \sin x}{\sin x+\cos x} d x \\
& =\frac{1}{2} \int \frac{(\sin x+\cos x)+(\sin x-\cos x)}{(\sin x+\cos x)} d x \\
& =\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x \\
& =\frac{1}{2}(x)+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x
\end{aligned}
$$

Let $\sin x+\cos x=t \Rightarrow(\cos x-\sin x) d x=d t$

$$
\begin{aligned}
\therefore I & =\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t} \\
& =\frac{x}{2}-\frac{1}{2} \log |t|+\mathrm{C} \\
& =\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+\mathrm{C}
\end{aligned}
$$

Q 33:

$\frac{1}{1-\tan x}$
Answer:

$$
\text { Let } \begin{aligned}
I & =\int \frac{1}{1-\tan x} d x \\
& =\int \frac{1}{1-\frac{\sin x}{\cos x}} d x \\
& =\int \frac{\cos x}{\cos x-\sin x} d x \\
& =\frac{1}{2} \int \frac{2 \cos x}{\cos x-\sin x} d x \\
& =\frac{1}{2} \int \frac{(\cos x-\sin x)+(\cos x+\sin x)}{(\cos x-\sin x)} d x \\
& =\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x \\
& =\frac{x}{2}+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x
\end{aligned}
$$

Put $\cos x-\sin x=t \Rightarrow(-\sin x-\cos x) d x=d t$

$$
\begin{aligned}
\therefore I & =\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t} \\
& =\frac{x}{2}-\frac{1}{2} \log |t|+\mathrm{C} \\
& =\frac{x}{2}-\frac{1}{2} \log |\cos x-\sin x|+\mathrm{C}
\end{aligned}
$$

Q 34:

$$
\frac{\sqrt{\tan x}}{\sin x \cos x}
$$

Answer:

$$
\text { Let } \begin{aligned}
I & =\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x \\
& =\int \frac{\sqrt{\tan x} \times \cos x}{\sin x \cos x \times \cos x} d x \\
& =\int \frac{\sqrt{\tan x}}{\tan x \cos ^{2} x} d x \\
& =\int \frac{\sec ^{2} x d x}{\sqrt{\tan x}}
\end{aligned}
$$

Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$

$$
\begin{aligned}
\therefore I & =\int \frac{d t}{\sqrt{t}} \\
& =2 \sqrt{t}+\mathrm{C} \\
& =2 \sqrt{\tan x}+\mathrm{C}
\end{aligned}
$$

Q 35:

$\frac{(1+\log x)^{2}}{x}$
Answer:
Let $1+\log x=t$
$\therefore \frac{1}{x} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{(1+\log x)^{2}}{x} d x & =\int t^{2} d t \\
& =\frac{t^{3}}{3}+\mathrm{C} \\
& =\frac{(1+\log x)^{3}}{3}+\mathrm{C}
\end{aligned}
$$

Q 36:
$\frac{(x+1)(x+\log x)^{2}}{x}$
Answer:
$\frac{(x+1)(x+\log x)^{2}}{x}=\left(\frac{x+1}{x}\right)(x+\log x)^{2}=\left(1+\frac{1}{x}\right)(x+\log x)^{2}$
Let $(x+\log x)=t$
$\therefore\left(1+\frac{1}{x}\right) d x=d t$

$$
\begin{aligned}
\Rightarrow \int\left(1+\frac{1}{x}\right)(x+\log x)^{2} d x & =\int t^{2} d t \\
& =\frac{t^{3}}{3}+\mathrm{C} \\
& =\frac{1}{3}(x+\log x)^{3}+\mathrm{C}
\end{aligned}
$$

Q 37:

$\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}$
Answer:
Let $x^{4}=t$
$\therefore 4 x^{3} d x=d t$
$\Rightarrow \int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x=\frac{1}{4} \int \frac{\sin \left(\tan ^{-1} t\right)}{1+t^{2}} d t$
Let $\tan ^{-1} t=u$
$\therefore \frac{1}{\therefore 1+t^{2}} d t=d u$

From (1), we obtain
$\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right) d x}{1+x^{8}}=\frac{1}{4} \int \sin u d u$

$$
=\frac{1}{4}(-\cos u)+\mathrm{C}
$$

$=\frac{-1}{4} \cos \left(\tan ^{-1} t\right)+\mathrm{C}$
$=\frac{-1}{4} \cos \left(\tan ^{-1} x^{4}\right)+C$

Q 38:

$\int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}} d x$ equals
(A) $10^{x}-x^{10}+\mathrm{C}$
(B) $10^{x}+x^{10}+\mathrm{C}$
(C) $\left(10^{x}-x^{10}\right)^{-1}+\mathrm{C}$
(D) $\quad \log \left(10^{x}+x^{10}\right)+\mathrm{C}$

Answer:
Let $x^{10}+10^{x}=t$
$\therefore\left(10 x^{9}+10^{x} \log _{e} 10\right) d x=d t$

$$
\begin{aligned}
& \Rightarrow \int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}} d x=\int \frac{d t}{t} \\
& =\log t+\mathrm{C} \\
& =\log \left(10^{x}+x^{10}\right)+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is D.

Q 39:

$\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$ equals
A. $\tan x+\cot x+C$
B. $\tan x-\cot x+C$
C. $\tan x \cot x+C$
D. $\tan x-\cot 2 x+C$

Answer:
Let $I=\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$

$$
\begin{aligned}
& =\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x \\
& =\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x \\
& =\int \frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x \\
& =\int \sec ^{2} x d x+\int \operatorname{cosec}^{2} x d x \\
& =\tan x-\cot x+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is B.

Exercise 7.3

Q 1:

$\sin ^{2}(2 x+5)$
Answer:

$$
\begin{aligned}
& \sin ^{2}(2 x+5)=\frac{1-\cos 2(2 x+5)}{2}=\frac{1-\cos (4 x+10)}{2} \\
& \begin{aligned}
\Rightarrow \int \sin ^{2}(2 x+5) d x & =\int \frac{1-\cos (4 x+10)}{2} d x \\
& =\frac{1}{2} \int 1 d x-\frac{1}{2} \int \cos (4 x+10) d x \\
& =\frac{1}{2} x-\frac{1}{2}\left(\frac{\sin (4 x+10)}{4}\right)+\mathrm{C} \\
& =\frac{1}{2} x-\frac{1}{8} \sin (4 x+10)+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 2:

$\sin 3 x \cos 4 x$
Answer:
It is known that, $\sin A \cos B=\frac{1}{2}\{\sin (A+B)+\sin (A-B)\}$

$$
\begin{aligned}
\therefore \int \sin 3 x \cos 4 x d x & =\frac{1}{2} \int\{\sin (3 x+4 x)+\sin (3 x-4 x)\} d x \\
& =\frac{1}{2} \int\{\sin 7 x+\sin (-x)\} d x \\
& =\frac{1}{2} \int\{\sin 7 x-\sin x\} d x \\
& =\frac{1}{2} \int \sin 7 x d x-\frac{1}{2} \int \sin x d x \\
& =\frac{1}{2}\left(\frac{-\cos 7 x}{7}\right)-\frac{1}{2}(-\cos x)+\mathrm{C} \\
& =\frac{-\cos 7 x}{14}+\frac{\cos x}{2}+\mathrm{C}
\end{aligned}
$$

Q 3:

$\cos 2 x \cos 4 x \cos 6 x$

Answer:

It is known that, $\cos A \cos B=\frac{1}{2}\{\cos (A+B)+\cos (A-B)\}$

$$
\begin{aligned}
\therefore \int \cos 2 x(\cos 4 x \cos 6 x) d x & =\int \cos 2 x\left[\frac{1}{2}\{\cos (4 x+6 x)+\cos (4 x-6 x)\}\right] d x \\
& =\frac{1}{2} \int\{\cos 2 x \cos 10 x+\cos 2 x \cos (-2 x)\} d x \\
& =\frac{1}{2} \int\left\{\cos 2 x \cos 10 x+\cos ^{2} 2 x\right\} d x \\
& =\frac{1}{2} \int\left[\left\{\frac{1}{2} \cos (2 x+10 x)+\cos (2 x-10 x)\right\}+\left(\frac{1+\cos 4 x}{2}\right)\right] d x \\
& =\frac{1}{4} \int(\cos 12 x+\cos 8 x+1+\cos 4 x) d x \\
& =\frac{1}{4}\left[\frac{\sin 12 x}{12}+\frac{\sin 8 x}{8}+x+\frac{\sin 4 x}{4}\right]+C
\end{aligned}
$$

Q 4:

$\sin ^{3}(2 x+1)$
Answer:

$$
\begin{aligned}
& \text { Let } I=\int \sin ^{3}(2 x+1) \\
& \begin{aligned}
\Rightarrow \int \sin ^{3}(2 x+1) d x & =\int \sin ^{2}(2 x+1) \cdot \sin (2 x+1) d x \\
& =\int\left(1-\cos ^{2}(2 x+1)\right) \sin (2 x+1) d x
\end{aligned}
\end{aligned}
$$

Let $\cos (2 x+1)=t$
$\Rightarrow-2 \sin (2 x+1) d x=d t$
$\Rightarrow \sin (2 x+1) d x=\frac{-d t}{2}$

$$
\begin{aligned}
\Rightarrow I & =\frac{-1}{2} \int\left(1-t^{2}\right) d t \\
& =\frac{-1}{2}\left\{t-\frac{t^{3}}{3}\right\} \\
& =\frac{-1}{2}\left\{\cos (2 x+1)-\frac{\cos ^{3}(2 x+1)}{3}\right\} \\
& =\frac{-\cos (2 x+1)}{2}+\frac{\cos ^{3}(2 x+1)}{6}+\mathrm{C}
\end{aligned}
$$

Q 5:

$\sin ^{3} x \cos ^{3} x$
Answer:

$$
\text { Let } \begin{aligned}
I & =\int \sin ^{3} x \cos ^{3} x \cdot d x \\
& =\int \cos ^{3} x \cdot \sin ^{2} x \cdot \sin x \cdot d x \\
& =\int \cos ^{3} x\left(1-\cos ^{2} x\right) \sin x \cdot d x
\end{aligned}
$$

Let $\cos x=t$
$\Rightarrow-\sin x \cdot d x=d t$
$\Rightarrow I=-\int t^{3}\left(1-t^{2}\right) d t$
$=-\int\left(t^{3}-t^{5}\right) d t$
$=-\left\{\frac{t^{4}}{4}-\frac{t^{6}}{6}\right\}+\mathrm{C}$
$=-\left\{\frac{\cos ^{4} x}{4}-\frac{\cos ^{6} x}{6}\right\}+\mathrm{C}$
$=\frac{\cos ^{6} x}{6}-\frac{\cos ^{4} x}{4}+\mathrm{C}$

Q 6:

$\sin x \sin 2 x \sin 3 x$
Answer:
It is known that, $\sin A \sin B=\frac{1}{2}\{\cos (A-B)-\cos (A+B)\}$
$\therefore \int \sin x \sin 2 x \sin 3 x d x=\int\left[\sin x \cdot \frac{1}{2}\{\cos (2 x-3 x)-\cos (2 x+3 x)\}\right] d x$

$$
\begin{aligned}
& =\frac{1}{2} \int(\sin x \cos (-x)-\sin x \cos 5 x) d x \\
& =\frac{1}{2} \int(\sin x \cos x-\sin x \cos 5 x) d x \\
& =\frac{1}{2} \int \frac{\sin 2 x}{2} d x-\frac{1}{2} \int \sin x \cos 5 x d x \\
& =\frac{1}{4}\left[\frac{-\cos 2 x}{2}\right]-\frac{1}{2} \int\left\{\frac{1}{2} \sin (x+5 x)+\sin (x-5 x)\right\} d x \\
& =\frac{-\cos 2 x}{8}-\frac{1}{4} \int(\sin 6 x+\sin (-4 x)) d x \\
& =\frac{-\cos 2 x}{8}-\frac{1}{4}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{4}\right]+\mathrm{C} \\
& =\frac{-\cos 2 x}{8}-\frac{1}{8}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{2}\right]+\mathrm{C} \\
& =\frac{1}{8}\left[\frac{\cos 6 x}{3}-\frac{\cos 4 x}{2}-\cos 2 x\right]+\mathrm{C}
\end{aligned}
$$

Q 7:
$\sin 4 x \sin 8 x$
Answer:
It is known that, $\sin A \sin B=\frac{1}{2} \cos (A-B)-\cos (A+B)$

$$
\begin{aligned}
\therefore \int \sin 4 x \sin 8 x d x & =\int\left\{\frac{1}{2} \cos (4 x-8 x)-\cos (4 x+8 x)\right\} d x \\
& =\frac{1}{2} \int(\cos (-4 x)-\cos 12 x) d x \\
& =\frac{1}{2} \int(\cos 4 x-\cos 12 x) d x \\
& =\frac{1}{2}\left[\frac{\sin 4 x}{4}-\frac{\sin 12 x}{12}\right]
\end{aligned}
$$

Q 8:
$\frac{1-\cos x}{1+\cos x}$
Answer:

$$
\begin{aligned}
& \begin{aligned}
& \begin{aligned}
& 1-\cos x \\
& 1+\cos x= \\
& 2 \cos ^{2} \frac{2}{2}
\end{aligned} \\
&=\tan ^{2} \frac{x}{2} \\
&=\left(\sec ^{2} \frac{x}{2}-1\right) \\
& \begin{aligned}
\therefore \int \frac{1-\cos x}{1+\cos x} d x & =\int\left(\sec ^{2} \frac{x}{2}-1\right) d x \\
& \left.=\left[\frac{\tan \frac{x}{2}}{1}-x\right]+\mathrm{Cos} x \text { and } 2 \cos ^{2} \frac{x}{2}=1+\cos x\right] \\
& =2 \tan \frac{x}{2}-x+\mathrm{C}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Q 9:
$\frac{\cos x}{1+\cos x}$
Answer:

$$
\begin{aligned}
& \begin{aligned}
& \frac{\cos x}{1+\cos x}= \frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} \quad\left[\cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2} \text { and } \cos x=2 \cos ^{2} \frac{x}{2}-1\right] \\
&= \frac{1}{2}\left[1-\tan ^{2} \frac{x}{2}\right] \\
& \begin{aligned}
\therefore \int \frac{\cos x}{1+\cos x} d x & =\frac{1}{2} \int\left(1-\tan ^{2} \frac{x}{2}\right) d x \\
& =\frac{1}{2} \int\left(1-\sec ^{2} \frac{x}{2}+1\right) d x \\
& =\frac{1}{2} \int\left(2-\sec ^{2} \frac{x}{2}\right) d x \\
& =\frac{1}{2}\left[2 x-\frac{\tan ^{\frac{x}{2}}}{\frac{1}{2}}\right]+\mathrm{C}
\end{aligned} \\
&= x-\tan \frac{x}{2}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 10:
$\sin ^{4} x$
Answer:

$$
\begin{aligned}
& \sin ^{4} x= \sin ^{2} x \sin ^{2} x \\
&=\left(\frac{1-\cos 2 x}{2}\right)\left(\frac{1-\cos 2 x}{2}\right) \\
&= \frac{1}{4}(1-\cos 2 x)^{2} \\
&= \frac{1}{4}\left[1+\cos ^{2} 2 x-2 \cos 2 x\right] \\
&= \frac{1}{4}\left[1+\left(\frac{1+\cos 4 x}{2}\right)-2 \cos 2 x\right] \\
&= \frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] \\
&=\frac{1}{4}\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] \\
& \therefore \int \sin ^{4} x d x=\frac{1}{4} \int\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] d x \\
&=\frac{1}{4}\left[\frac{3}{2} x+\frac{1}{2}\left(\frac{\sin 4 x}{4}\right)-\frac{2 \sin 2 x}{2}\right]+\mathrm{C} \\
&=\frac{1}{8}\left[3 x+\frac{\sin 4 x}{4}-2 \sin 2 x\right]+\mathrm{C} \\
&=\frac{3 x}{8}-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+\mathrm{C}
\end{aligned}
$$

Q 11:
$\cos ^{4} 2 x$
Answer:

$$
\begin{aligned}
\cos ^{4} 2 x & =\left(\cos ^{2} 2 x\right)^{2} \\
& =\left(\frac{1+\cos 4 x}{2}\right)^{2} \\
& =\frac{1}{4}\left[1+\cos ^{2} 4 x+2 \cos 4 x\right] \\
& =\frac{1}{4}\left[1+\left(\frac{1+\cos 8 x}{2}\right)+2 \cos 4 x\right] \\
& =\frac{1}{4}\left[1+\frac{1}{2}+\frac{\cos 8 x}{2}+2 \cos 4 x\right] \\
& =\frac{1}{4}\left[\frac{3}{2}+\frac{\cos 8 x}{2}+2 \cos 4 x\right]
\end{aligned}
$$

$$
\therefore \int \cos ^{4} 2 x d x=\int\left(\frac{3}{8}+\frac{\cos 8 x}{8}+\frac{\cos 4 x}{2}\right) d x
$$

$$
=\frac{3}{8} x+\frac{\sin 8 x}{64}+\frac{\sin 4 x}{8}+C
$$

Q 12:

$$
\frac{\sin ^{2} x}{1+\cos x}
$$

Answer:

$$
\begin{aligned}
& \begin{aligned}
\frac{\sin ^{2} x}{1+\cos x} & =\frac{\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}\left[\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2} ; \cos x=2 \cos ^{2} \frac{x}{2}-1\right] \\
& =\frac{4 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} \\
& =2 \sin ^{2} \frac{x}{2} \\
& =1-\cos x
\end{aligned} \\
& \begin{aligned}
\therefore \int \frac{\sin ^{2} x}{1+\cos x} d x & =\int(1-\cos x) d x \\
& =x-\sin x+C
\end{aligned}
\end{aligned}
$$

Q 13:
$\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}$
Answer:

$$
\begin{aligned}
& \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}=\frac{-2 \sin \frac{2 x+2 \alpha}{2} \sin \frac{2 x-2 \alpha}{2}}{-2 \sin \frac{x+\alpha}{2} \sin \frac{x-\alpha}{2}} \\
& {\left[\cos C-\cos D=-2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}\right]} \\
& =\frac{\sin (x+\alpha) \sin (x-\alpha)}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)} \\
& =\frac{\left[2 \sin \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x+\alpha}{2}\right)\right]\left[2 \sin \left(\frac{x-\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right)\right]}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)} \\
& =4 \cos \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right) \\
& =2\left[\cos \left(\frac{x+\alpha}{2}+\frac{x-\alpha}{2}\right)+\cos \frac{x+\alpha}{2}-\frac{x-\alpha}{2}\right] \\
& =2[\cos (x)+\cos \alpha] \\
& =2 \cos x+2 \cos \alpha \\
& \therefore \int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x=\int 2 \cos x+2 \cos \alpha \\
& =2[\sin x+x \cos \alpha]+\mathrm{C}
\end{aligned}
$$

Q 14:
$\frac{\cos x-\sin x}{1+\sin 2 x}$
Answer:

$$
\begin{aligned}
& \frac{\cos x-\sin x}{1+\sin 2 x}=\frac{\cos x-\sin x}{\left(\sin ^{2} x+\cos ^{2} x\right)+2 \sin x \cos x} \\
& \quad\left[\sin ^{2} x+\cos ^{2} x=1 ; \sin 2 x=2 \sin x \cos x\right] \\
&(\sin x+\cos x)^{2}
\end{aligned}
$$

Let $\sin x+\cos x=t$
$\therefore(\cos x-\sin x) d x=d t$

$$
\Rightarrow \int \frac{\cos x-\sin x}{1+\sin 2 x} d x=\int \frac{\cos x-\sin x}{(\sin x+\cos x)^{2}} d x
$$

$$
=\int \frac{d t}{t^{2}}
$$

$$
=\int t^{-2} d t
$$

$$
=-t^{-1}+\mathrm{C}
$$

$$
=-\frac{1}{t}+\mathrm{C}
$$

$$
=\frac{-1}{\sin x+\cos x}+\mathrm{C}
$$

Q 15:
$\tan ^{3} 2 x \sec 2 x$
Answer:
$\tan ^{3} 2 x \sec 2 x=\tan ^{2} 2 x \tan 2 x \sec 2 x$

$$
\begin{aligned}
& =\left(\sec ^{2} 2 x-1\right) \tan 2 x \sec 2 x \\
& =\sec ^{2} 2 x \cdot \tan 2 x \sec 2 x-\tan 2 x \sec 2 x
\end{aligned}
$$

$\therefore \int \tan ^{3} 2 x \sec 2 x d x=\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\int \tan 2 x \sec 2 x d x$

$$
=\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\frac{\sec 2 x}{2}+\mathrm{C}
$$

Let $\sec 2 x=t$
$\therefore 2 \sec 2 x \tan 2 x d x=d t$

$$
\begin{aligned}
\therefore \int \tan ^{3} 2 x \sec 2 x d x & =\frac{1}{2} \int t^{2} d t-\frac{\sec 2 x}{2}+\mathrm{C} \\
& =\frac{t^{3}}{6}-\frac{\sec 2 x}{2}+\mathrm{C} \\
& =\frac{(\sec 2 x)^{3}}{6}-\frac{\sec 2 x}{2}+\mathrm{C}
\end{aligned}
$$

Q 16:
$\tan ^{4} x$

Answer:

$$
\tan ^{4} x
$$

$$
=\tan ^{2} x \cdot \tan ^{2} x
$$

$$
=\left(\sec ^{2} x-1\right) \tan ^{2} x
$$

$$
=\sec ^{2} x \tan ^{2} x-\tan ^{2} x
$$

$$
=\sec ^{2} x \tan ^{2} x-\left(\sec ^{2} x-1\right)
$$

$$
=\sec ^{2} x \tan ^{2} x-\sec ^{2} x+1
$$

$$
\therefore \int \tan ^{4} x d x=\int \sec ^{2} x \tan ^{2} x d x-\int \sec ^{2} x d x+\int 1 \cdot d x
$$

$$
\begin{equation*}
=\int \sec ^{2} x \tan ^{2} x d x-\tan x+x+\mathrm{C} \tag{1}
\end{equation*}
$$

Consider $\int \sec ^{2} x \tan ^{2} x d x$
Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$\Rightarrow \int \sec ^{2} x \tan ^{2} x d x=\int t^{2} d t=\frac{t^{3}}{3}=\frac{\tan ^{3} x}{3}$
From equation (1), we obtain
$\int \tan ^{4} x d x=\frac{1}{3} \tan ^{3} x-\tan x+x+\mathrm{C}$

Q 17:
$\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}$
Answer:

$$
\begin{aligned}
\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} & =\frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x}+\frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x}+\frac{\cos x}{\sin ^{2} x} \\
& =\tan x \sec x+\cot x \operatorname{cosec} x
\end{aligned}
$$

$$
\therefore \int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x=\int(\tan x \sec x+\cot x \operatorname{cosec} x) d x
$$

$$
=\sec x-\operatorname{cosec} x+C
$$

Q 18:

$$
\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}
$$

Answer:

$$
\begin{aligned}
& \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} \\
& =\frac{\cos 2 x+(1-\cos 2 x)}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x \\
& \therefore \int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} d x=\int \sec ^{2} x d x=\tan x+\mathrm{C}
\end{aligned}
$$

Q 19:
$\frac{1}{\sin x \cos ^{3} x}$
Answer

$$
\begin{aligned}
\frac{1}{\sin x \cos ^{3} x} & =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos ^{3} x} \\
& =\frac{\sin x}{\cos ^{3} x}+\frac{1}{\sin x \cos x} \\
& =\tan x \sec ^{2} x+\frac{1 \cos ^{2} x}{\frac{\sin x \cos x}{\cos ^{2} x}} \\
& =\tan x \sec ^{2} x+\frac{\sec ^{2} x}{\tan x}
\end{aligned}
$$

$$
\therefore \int \frac{1}{\sin x \cos ^{3} x} d x=\int \tan x \sec ^{2} x d x+\int \frac{\sec ^{2} x}{\tan x} d x
$$

Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{\sin x \cos ^{3} x} d x & =\int t d t+\int \frac{1}{t} d t \\
& =\frac{t^{2}}{2}+\log |t|+\mathrm{C} \\
& =\frac{1}{2} \tan ^{2} x+\log |\tan x|+\mathrm{C}
\end{aligned}
$$

Q 20:
$\frac{\cos 2 x}{(\cos x+\sin x)^{2}}$
Answer:

$$
\begin{aligned}
& \frac{\cos 2 x}{(\cos x+\sin x)^{2}}=\frac{\cos 2 x}{\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x}=\frac{\cos 2 x}{1+\sin 2 x} \\
& \therefore \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\int \frac{\cos 2 x}{(1+\sin 2 x)} d x
\end{aligned}
$$

Let $1+\sin 2 x=t$
$\Rightarrow 2 \cos 2 x d x=d t$

$$
\begin{aligned}
\therefore \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x & =\frac{1}{2} \int_{t}^{1} d t \\
& =\frac{1}{2} \log |t|+\mathrm{C} \\
& =\frac{1}{2} \log |1+\sin 2 x|+\mathrm{C} \\
& =\frac{1}{2} \log \left|(\sin x+\cos x)^{2}\right|+\mathrm{C} \\
& =\log |\sin x+\cos x|+\mathrm{C}
\end{aligned}
$$

Q 21:

$\sin ^{1}(\cos x)$
Answer
$\sin ^{-1}(\cos x)$
Let $\cos x=t$
Then, $\sin x=\sqrt{1-t^{2}}$

$$
\begin{aligned}
& \Rightarrow(-\sin x) d x=d t \\
& d x=\frac{-d t}{\sin x} \\
& d x=\frac{-d t}{\sqrt{1-t^{2}}} \\
& \therefore \int \sin ^{-1}(\cos x) d x=\int \sin ^{-1} t\left(\frac{-d t}{\sqrt{1-t^{2}}}\right) \\
& \quad=-\int \frac{\sin ^{-1} t}{\sqrt{1-t^{2}}} d t
\end{aligned}
$$

Let $\sin ^{-1} t=u$

$$
\begin{align*}
& \Rightarrow \frac{1}{\sqrt{1-t^{2}}} d t=d u \\
& \begin{aligned}
\therefore \int \sin ^{-1}(\cos x) d x & =\int 4 d u \\
& =-\frac{u^{2}}{2}+\mathrm{C} \\
& =\frac{-\left(\sin ^{1} t\right)^{2}}{2}+\mathrm{C} \\
& =\frac{-\left[\sin ^{-1}(\cos x)\right]^{2}}{2}+\mathrm{C}
\end{aligned}
\end{align*}
$$

It is known that,
$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$\therefore \sin ^{-1}(\cos x)=\frac{\pi}{2}-\cos ^{-1}(\cos x)=\left(\frac{\pi}{2}-x\right)$
Substituting in equation (1), we obta n

$$
\begin{aligned}
\int \sin ^{-1}(\cos x) d x & =\frac{-\left[\frac{\pi}{2}-x\right]^{2}}{2}+C \\
& =-\frac{1}{2}\left(\frac{\pi^{2}}{2}+x^{2}-\pi x\right)+C \\
& =-\frac{\pi^{2}}{8}-\frac{x^{2}}{2}+\frac{1}{2} \pi x+C \\
& =\frac{\pi x}{2}-\frac{x^{2}}{2}+\left(C-\frac{\pi^{2}}{8}\right) \\
& =\frac{\pi x}{2}-\frac{x^{2}}{2}+C_{1}
\end{aligned}
$$

Q 22:
$\frac{1}{\cos (x-a) \cos (x-b)}$
Answer:

$$
\begin{aligned}
& \frac{1}{\cos (x-a) \cos (x-b)}=\frac{1}{\sin (a-b)}\left[\frac{\sin (a-b)}{\cos (x-a) \cos (x-b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin [(x-b)-(x-a)]}{\cos (x-a) \cos (x-b)}\right] \\
& =\frac{1}{\sin (a-b)} \frac{[\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)]}{\cos (x-a) \cos (x-b)} \\
& =\frac{1}{\sin (a-b)}[\tan (x-b)-\tan (x-a)] \\
& \Rightarrow \int \frac{1}{\cos (x-a) \cos (x-b)} d x=\frac{1}{\sin (a-b)} \int[\tan (x-b)-\tan (x-a)] d x \\
& =\frac{1}{\sin (a-b)}[-\log |\cos (x-b)|+\log |\cos (x-a)|] \\
& =\frac{1}{\sin (a-b)}\left[\log \left|\frac{\cos (x-a)}{\cos (x-b)}\right|\right]+\mathrm{C}
\end{aligned}
$$

Q 23:

$\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$
s equal to
A. $\tan x+\cot x+C$
B. $\tan x+\operatorname{cosec} x+C$
C. $\tan x+\cot x+C$
D. $\tan x+\sec x+C$

Answer:

$$
\begin{aligned}
\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x & =\int\left(\frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\right) d x \\
& =\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x \\
& =\tan x+\cot x+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is A.

Q 24:
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x$
A. $\cot \left(e x^{x}\right)+C$
B. $\tan \left(x e^{x}\right)+C$
C. $\tan \left(e^{x}\right)+C$
D. $\cot \left(e^{x}\right)+C$

Answer
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x$
Let $e^{x^{x}}=t$

$$
\begin{aligned}
& \Rightarrow\left(e^{x} \cdot x+e^{x} \cdot 1\right) d x=d t \\
& e^{x}(x+1) d x=d t \\
& \begin{aligned}
\therefore \int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x & =\int \frac{d t}{\cos ^{2} t} \\
& =\int \sec ^{2} t d t \\
& =\tan t+\mathrm{C} \\
& =\tan \left(e^{x} \cdot x\right)+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Hence, the correct Answers is B

Exercise 7.4

Q 1:

$\frac{3 x^{2}}{x^{6}+1}$

Answer:

$$
\text { Let } x^{3}=t
$$

$\therefore 3 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{3 x^{2}}{x^{6}+1} d x & =\int \frac{d t}{t^{2}+1} \\
& =\tan ^{1} t+\mathrm{C} \\
& =\tan ^{-1}\left(x^{3}\right)+\mathrm{C}
\end{aligned}
$$

Q 2:
$\frac{1}{\sqrt{1+4 x^{2}}}$
Answer:
Let $2 x=t$
$\therefore 2 d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{\sqrt{1+4 x^{2}}} d x & =\frac{1}{2} \int \frac{d t}{\sqrt{1+t^{2}}} \\
& =\frac{1}{2}\left[\log \left|t+\sqrt{t^{2}+1}\right|\right]+\mathrm{C} \quad\left[\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right] \\
& =\frac{1}{2} \log \left|2 x+\sqrt{4 x^{2}+1}\right|+\mathrm{C}
\end{aligned}
$$

Q 3:
$\frac{1}{\sqrt{(2-x)^{2}+1}}$
Answer
Let $2 x=t$
$\Rightarrow d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{\sqrt{(2-x)^{2}+1}} d x & =-\int \frac{1}{\sqrt{t^{2}+1}} d t \\
& =-\log \left|t+\sqrt{t^{2}+1}\right|+\mathrm{C} \quad \quad\left[\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right] \\
& =-\log \left|2-x+\sqrt{(2-x)^{2}+1}\right|+\mathrm{C} \\
& =\log \left|\frac{1}{(2-x)+\sqrt{x^{2}-4 x+5}}\right|+\mathrm{C}
\end{aligned}
$$

Q 4:

$\frac{1}{\sqrt{9-25 x^{2}}}$
Answer
Let $5 x=t$
$\therefore 5 d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{9-25 x^{2}}} d x=\frac{1}{5} \int \frac{1}{9-t^{2}} d t$ $=\frac{1}{5} \int \frac{1}{\sqrt{3^{2}-t^{2}}} d t$
$=\frac{1}{5} \sin ^{-1}\left(\frac{t}{3}\right)+C$
$=\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+\mathrm{C}$

Q 5:
$\frac{3 x}{1+2 x^{4}}$
Answer:
Let $\sqrt{2} x^{2}=t$
$\therefore 2 \sqrt{2} x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{3 x}{1+2 x^{4}} d x & =\frac{3}{2 \sqrt{2}} \int \frac{d t}{1+t^{2}} \\
& =\frac{3}{2 \sqrt{2}}\left[\tan ^{-1} t\right]+\mathrm{C} \\
& =\frac{3}{2 \sqrt{2}} \tan ^{-1}\left(\sqrt{2} x^{2}\right)+\mathrm{C}
\end{aligned}
$$

Q 6:
$\frac{x^{2}}{1-x^{6}}$
Answer:
Let $x^{3}=t$
$\therefore 3 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{x^{2}}{1-x^{6}} d x & =\frac{1}{3} \int \frac{d t}{1-t^{2}} \\
& =\frac{1}{3}\left[\frac{1}{2} \log \left|\frac{1+t}{1-t}\right|\right]+\mathrm{C} \\
& =\frac{1}{6} \log \left|\frac{1+x^{3}}{1-x^{3}}\right|+\mathrm{C}
\end{aligned}
$$

Q 7:
$\frac{x-1}{\sqrt{x^{2}-1}}$
Answer:

$$
\begin{equation*}
\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x \tag{1}
\end{equation*}
$$

For $\int \frac{x}{\sqrt{x^{2}-1}} d x$, let $x^{2}-1=t \Rightarrow 2 x d x=d t$

$$
\begin{aligned}
\therefore \int \frac{x}{\sqrt{x^{2}-1}} d x & =\frac{1}{2} \int \frac{d t}{\sqrt{t}} \\
& =\frac{1}{2} \int t^{-\frac{1}{2}} d t \\
& =\frac{1}{2}\left[2 t^{\frac{1}{2}}\right] \\
& =\sqrt{t} \\
& =\sqrt{x^{2}-1}
\end{aligned}
$$

From (1), we obtain

$$
\begin{aligned}
\int \frac{x-1}{\sqrt{x^{2}-1}} d x & =\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x \quad\left[\int \frac{1}{\sqrt{x^{2}-a^{2}}} d t=\log \left|x+\sqrt{x^{2}-a^{2}}\right|\right] \\
& =\sqrt{x^{2}-1}-\log \left|x+\sqrt{x^{2}-1}\right|+\mathrm{C}
\end{aligned}
$$

Q 8:
$\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}$
Answer.
Let $x^{3}=t$
$\Rightarrow 3 x^{2} d x=d t$
$\therefore \int \frac{x^{2}}{\sqrt{x^{6}+a^{6}}} d x=\frac{1}{3} \int \frac{d t}{\sqrt{t^{2}+\left(a^{3}\right)^{2}}}$
$=\frac{1}{3} \log \left|t+\sqrt{t^{2}+a^{6}}\right|+\mathrm{C}$
$=\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}+a^{6}}\right|+\mathrm{C}$

Q 9:

$\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}$
Answer

$$
\begin{aligned}
& \text { Let } \tan x=t \\
& \begin{aligned}
\therefore \sec ^{2} x d x=d t \\
\begin{aligned}
\Rightarrow \int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}} d x & =\int \frac{d t}{\sqrt{t^{2}+2^{2}}} \\
& =\log \left|t+\sqrt{t^{2}+4}\right|+\mathrm{C} \\
& =\log \left|\tan x+\sqrt{\tan ^{2} x+4}\right|+\mathrm{C}
\end{aligned}
\end{aligned} \begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

Q 10:
$\frac{1}{\sqrt{x^{2}+2 x+2}}$
Answer:
$\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{(x+1)^{2}+(1)^{2}}} d x$
Let $x+1=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{t^{2}+1}} d t$

$$
=\log \left|t+\sqrt{t^{2}+1}\right|+\mathrm{C}
$$

$$
=\log \left|(x+1)+\sqrt{(x+1)^{2}+1}\right|+\mathrm{C}
$$

$$
=\log \left|(x+1)+\sqrt{x^{2}+2 x+2}\right|+\mathrm{C}
$$

Q 11:
$\frac{1}{\sqrt{9 x^{2}+6 x+5}}$
Answer:

$$
\begin{aligned}
& \int \frac{1}{9 x^{2}+6 x+5} d x=\int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x \\
& \text { Let }(3 x+1)=t \\
& \therefore 3 d x=d t \\
& \begin{aligned}
\Rightarrow \int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x & =\frac{1}{3} \int \frac{1}{t^{2}+2^{2}} d t \\
& =\frac{1}{3}\left[\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)\right]+\mathrm{C} \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3 x+1}{2}\right)+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 12:
$\frac{1}{\sqrt{7-6 x-x^{2}}}$
Answer:
$7-6 x-x^{2}$ can be written as $7-\left(x^{2}+6 x+9-9\right)$.
Therefore,

$$
\begin{aligned}
& 7-\left(x^{2}+6 x+9-9\right) \\
& =16-\left(x^{2}+6 x+9\right) \\
& =16-(x+3)^{2} \\
& =(4)^{2}-(x+3)^{2} \\
& \therefore \int \frac{1}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x
\end{aligned}
$$

Let $x+3=t$
$\Rightarrow d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(t)^{2}}} d t$

$$
=\sin ^{-1}\left(\frac{t}{4}\right)+\mathrm{C}
$$

$$
=\sin ^{-1}\left(\frac{x+3}{4}\right)+\mathrm{C}
$$

Q 13:
$\frac{1}{\sqrt{(x-1)(x-2)}}$
Answer:
$(x-1)(x-2)$ can be written as $x^{2}-3 x+2$.
Therefore,
$x^{2}-3 x+2$
$=x^{2}-3 x+\frac{9}{4}-\frac{9}{4}+2$
$=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}$
$=\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}$
$\therefore \int \frac{1}{\sqrt{(x-1)(x-2)}} d x=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x$
Let $x-\frac{3}{2}=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}} d t$
$=\log \left|t+\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}\right|+\mathrm{C}$
$=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+\mathrm{C}$

Q 14:
$\frac{1}{\sqrt{8+3 x-x^{2}}}$

Answer
$8+3 x-x^{2}$ can be written as $8-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)$.
Therefore,

$$
\begin{aligned}
& 8-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right) \\
& =\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2} \\
& \Rightarrow \int \frac{1}{\sqrt{8+3 x-x^{2}}} d x=\int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x
\end{aligned}
$$

Let $x-\frac{3}{2}=t$
$\therefore d x=d t$

$$
\Rightarrow \int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^{2}-t^{2}}} d t
$$

$$
=\sin ^{-1}\left(\frac{t}{\frac{\sqrt{41}}{2}}\right)+\mathrm{C}
$$

$$
=\sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{41}}{2}}\right)+\mathrm{C}
$$

$$
=\sin ^{-1}\left(\frac{2 x-3}{\sqrt{41}}\right)+\mathrm{C}
$$

Q 15:

$\frac{1}{\sqrt{(x-a)(x-b)}}$

Answer:

$(x-a)(x-b)$ can be written as $x^{2}-(a+b) x+a b$.
Therefore,

$$
\begin{aligned}
& x^{2}-(a+b) x+a b \\
& =x^{2}-(a+b) x+\frac{(a+b)^{2}}{4}-\frac{(a+b)^{2}}{4}+a b \\
& =\left[x-\left(\frac{a+b}{2}\right)\right]^{2}-\frac{(a-b)^{2}}{4} \\
& \Rightarrow \int \frac{1}{\sqrt{(x-a)(x-b)}} d x=\int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a-b}{2}\right)^{2}}} d x
\end{aligned}
$$

Let $x-\left(\frac{a+b}{2}\right)=t$

$$
\begin{aligned}
\therefore d x=d t \\
\begin{aligned}
\Rightarrow \int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a-b}{2}\right)^{2}}} & =\int \frac{1}{\sqrt{t^{2}-\left(\frac{a-b}{2}\right)^{2}}} d t \\
& =\log \left|t+\sqrt{t^{2}-\left(\frac{a-b}{2}\right)^{2}}\right|+\mathrm{C} \\
& =\log \left|\left\{x-\left(\frac{a+b}{2}\right)\right\}+\sqrt{(x-a)(x-b)}\right|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 16:
$\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}$
Answer:
Let $4 x+1=A \frac{d}{d x}\left(2 x^{2}+x-3\right)+B$
$\Rightarrow 4 x+1=A(4 x+1)+B$
$\Rightarrow 4 x+1=4 A x+A+B$
Equating the coefficients of x and constant term on both sides, we obtain

$$
\begin{aligned}
& 4 A=4 \Rightarrow A=1 \\
& A+B=1 \Rightarrow B=0 \\
& \text { Let } 2 x^{2}+x-3=t
\end{aligned}
$$

$\therefore(4 x+1) d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x & =\int \frac{1}{\sqrt{t}} d t \\
& =2 \sqrt{t}+\mathrm{C} \\
& =2 \sqrt{2 x^{2}+x-3}+\mathrm{C}
\end{aligned}
$$

Q 17:
$\frac{x+2}{\sqrt{x^{2}-1}}$
Answer:
Let $x+2=A \frac{d}{d x}\left(x^{2}-1\right)+B$
$\Rightarrow x+2=A(2 x)+B$
Equating the coefficients of x and constant term on both sides, we obtain
$2 A=1 \Rightarrow A=\frac{1}{2}$
$B=2$
From (1), we obtain

$$
(x+2)=\frac{1}{2}(2 x)+2
$$

Then, $\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\int \frac{\frac{1}{2}(2 x)+2}{\sqrt{x^{2}-1}} d x$

$$
\begin{equation*}
=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x+\int \frac{2}{\sqrt{x^{2}-1}} d x \tag{2}
\end{equation*}
$$

In $\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x$, let $x^{2}-1=t \Rightarrow 2 x d x=d t$

$$
\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}
$$

$$
=\frac{1}{2}[2 \sqrt{t}]
$$

$$
=\sqrt{t}
$$

$$
=\sqrt{x^{2}-1}
$$

Then, $\int \frac{2}{\sqrt{x^{2}-1}} d x=2 \int \frac{1}{\sqrt{x^{2}-1}} d x=2 \log \left|x+\sqrt{x^{2}-1}\right|$
From equation (2), we obtain

$$
\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+\mathrm{C}
$$

Q 18:

$\frac{5 x-2}{1+2 x+3 x^{2}}$
Answer:
Let $5 x-2=A \frac{d}{d x}\left(1+2 x+3 x^{2}\right)+B$
$\Rightarrow 5 x-2=A(2+6 x)+B$
Equating the coefficient of x and constant term on both sides, we obtain

$$
\begin{aligned}
& 5=6 A \Rightarrow A=\frac{5}{6} \\
& 2 A+B=-2 \Rightarrow B=-\frac{11}{3} \\
& \begin{aligned}
& \therefore 5 x-2=\frac{5}{6}(2+6 x)+\left(-\frac{11}{3}\right) \\
& \Rightarrow \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\int \frac{\frac{5}{6}(2+6 x)-\frac{11}{3}}{1+2 x+3 x^{2}} d x \\
&=\frac{5}{6} \int \frac{2+6 x}{1+2 x+3 x^{2}} d x-\frac{11}{3} \int \frac{1}{1+2 x+3 x^{2}} d x
\end{aligned}
\end{aligned}
$$

Let $I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x$ and $I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x$
$\therefore \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\frac{5}{6} I_{1}-\frac{11}{3} I_{2}$
$I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x$
Let $1+2 x+3 x^{2}=t$
$\Rightarrow(2+6 x) d x=d t$
$\therefore I_{1}=\int \frac{d t}{t}$
$I_{1}=\log |t|$
$I_{1}=\log \left|1+2 x+3 x^{2}\right|$
$I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x$
$1+2 x+3 x^{2}$ can be written as $1+3\left(x^{2}+\frac{2}{3} x\right)$.
Therefore,

$$
\begin{align*}
& 1+3\left(x^{2}+\frac{2}{3} x\right) \\
& =1+3\left(x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9}\right) \\
& =1+3\left(x+\frac{1}{3}\right)^{2}-\frac{1}{3} \\
& =\frac{2}{3}+3\left(x+\frac{1}{3}\right)^{2} \\
& =3\left[\left(x+\frac{1}{3}\right)^{2}+\frac{2}{9}\right] \\
& =3\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right] \\
& I_{2}=\frac{1}{3} \int \frac{1}{\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]} d x \\
& =\frac{1}{3}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x+\frac{1}{3}}{\sqrt{2}}\right)\right] \\
& \left.\left.\left.=\frac{1}{3}\right)\right] \frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right] \\
& =\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right) \tag{3}
\end{align*}
$$

Substituting equations (2) and (3) in equation (1), we obtain

$$
\begin{aligned}
\int \frac{5 x-2}{1+2 x+3 x^{2}} d x & =\frac{5}{6}\left[\log \left|1+2 x+3 x^{2}\right|\right]-\frac{11}{3}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]+\mathrm{C} \\
& =\frac{5}{6} \log \left|1+2 x+3 x^{2}\right|-\frac{11}{3 \sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+\mathrm{C}
\end{aligned}
$$

Q 19:
$\frac{6 x+7}{\sqrt{(x-5)(x-4)}}$
Answer
$\frac{6 x+7}{\sqrt{(x-5)(x-4)}}=\frac{6 x+7}{\sqrt{x^{2}-9 x+20}}$
Let $6 x+7=A \frac{d}{d x}\left(x^{2}-9 x+20\right)+B$
$\Rightarrow 6 x+7=A(2 x-9)+B$
Equating the coefficients of x and constant term, we obtain
$2 A=6 \Rightarrow A=3$
$-9 A+B=7 \Rightarrow B=34$
$\therefore 6 x+7=3(2 x \quad 9)+34$

$$
\begin{aligned}
\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} & =\int \frac{3(2 x-9)+34}{\sqrt{x^{2}-9 x+20}} d x \\
& =3 \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x+34 \int \frac{1}{\sqrt{x^{2}-9 x+20}} d x
\end{aligned}
$$

Let $I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
$\therefore \int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}}=3 I_{1}+34 I_{2}$
Then,
$I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$
Let $x^{2}-9 x+20=t$
$\Rightarrow(2 x-9) d x=d t$
$\Rightarrow I_{1}=\frac{d t}{\sqrt{t}}$
$I_{1}=2 \sqrt{t}$
$I_{1}=2 \sqrt{x^{2}-9 x+20}$
and $I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
$x^{2}-9 x+20$ can be written as $x^{2}-9 x+20+\frac{81}{4}-\frac{81}{4}$.
Therefore,
$x^{2}-9 x+20+\frac{81}{4}-\frac{81}{4}$
$=\left(x-\frac{9}{2}\right)^{2}-\frac{1}{4}$
$=\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}$
$\Rightarrow I_{2}=\int \frac{1}{\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x$
$I_{2}=\log \left|\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right|$
Substituting equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x & =3\left[2 \sqrt{x^{2}-9 x+20}\right]+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+\mathrm{C} \\
& =6 \sqrt{x^{2}-9 x+20}+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+\mathrm{C}
\end{aligned}
$$

Q 20:
$\frac{x+2}{\sqrt{4 x-x^{2}}}$
Answer:
Let $x+2=A \frac{d}{d x}\left(4 x-x^{2}\right)+B$
$\Rightarrow x+2=A(4-2 x)+B$
Equating the coefficients of x and constant term on both sides, we obtain

$$
\begin{aligned}
& -2 A=1 \Rightarrow A=-\frac{1}{2} \\
& 4 A+B=2 \Rightarrow B=4 \\
& \Rightarrow(x+2)=-\frac{1}{2}(4-2 x)+4 \\
& \begin{aligned}
\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x & =\int \frac{-\frac{1}{2}(4-2 x)+4}{\sqrt{4 x-x^{2}}} d x \\
& =-\frac{1}{2} \int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x+4 \int \frac{1}{\sqrt{4 x-x^{2}}} d x
\end{aligned}
\end{aligned}
$$

Let $I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$ and $I_{2} \int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=-\frac{1}{2} I_{1}+4 I_{2}$

Then, $I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$
Let $4 x-x^{2}=1$

$$
\begin{align*}
& \Rightarrow(4-2 x) d x=d t \\
& \Rightarrow t_{1}=\int_{\sqrt{t}}^{d t}=2 \sqrt{t}=2 \sqrt{4 x-x^{2}} \tag{2}
\end{align*}
$$

$I_{2}=\int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\Rightarrow 4 x-x^{2}=-\left(-4 x+x^{2}\right)$

$$
=\left(-4 x+x^{2}+4-4\right)
$$

$$
=4-(x-2)^{2}
$$

$$
=(2)^{2}-(x-2)^{2}
$$

$$
\begin{equation*}
\therefore I_{2}=\int \frac{1}{\sqrt{(2)^{2}-(x-2)^{2}}} d x=\sin ^{-1}\left(\frac{x-2}{2}\right) \tag{3}
\end{equation*}
$$

Using equations (2) a nd (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{x+2}{\sqrt{4 x-x^{2}}} d x & =-\frac{1}{2}\left(2 \sqrt{4 x-x^{2}}\right)+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C} \\
& =-\sqrt{4 x-x^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C}
\end{aligned}
$$

Q 21:

$\frac{x+2}{\sqrt{x^{2}+2 x+3}}$
Answer:

$$
\begin{aligned}
\int \frac{(x+2)}{\sqrt{x^{2}+2 x+3}} d x & =\frac{1}{2} \int \frac{2(x+2)}{\sqrt{x^{2}+2 x+3}} d x \\
& =\frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x+3}} d x \\
& =\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\frac{1}{2} \int \frac{2}{\sqrt{x^{2}+2 x+3}} d x \\
& =\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x
\end{aligned}
$$

Let $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\therefore \int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2} I_{1}+I_{2}$
Then, $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$
Let $x^{2}+2 x+3=t$
$\Rightarrow(2 x+2) d x=d t$

$$
\begin{align*}
& I_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{x^{2}+2 x+3} \tag{2}\\
& I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x \\
& \Rightarrow x^{2}+2 x+3=x^{2}+2 x+1+2=(x+1)^{2}+(\sqrt{2})^{2} \\
& \therefore I_{2}=\int \frac{1}{\sqrt{(x+1)^{2}+(\sqrt{2})^{2}}} d x=\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|
\end{align*}
$$

Using equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
& \int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2}\left[2 \sqrt{x^{2}+2 x+3}\right]+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C} \\
& =\sqrt{x^{2}+2 x+3}+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C}
\end{aligned}
$$

Q 22:
$\frac{x+3}{x^{2}-2 x-5}$
Answer:
Let $(x+3)=A \frac{d}{d x}\left(x^{2}-2 x-5\right)+B$
$(x+3)=A(2 x-2)+B$
Equating the coefficients of x and constant term on both sides, we obtain
$2 A=1 \Rightarrow A=\frac{1}{2}$
$-2 A+B=3 \Rightarrow B=4$
$\therefore(x+3)=\frac{1}{2}(2 x-2)+4$
$\Rightarrow \int \frac{x+3}{x^{2}-2 x-5} d x=\int \frac{\frac{1}{2}(2 x-2)+4}{x^{2}-2 x-5} d x$
$=\frac{1}{2} \int \frac{2 x-2}{x^{2}-2 x-5} d x+4 \int \frac{1}{x^{2}-2 x-5} d x$

Let $I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$ and $I_{2}=\int \frac{1}{x^{2}-2 x-5} d x$
$\therefore \int \frac{x+3}{\left(x^{2}-2 x-5\right)} d x=\frac{1}{2} I_{1}+4 I_{2}$
Then, $I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$
Let $x^{2}-2 x-5=t$
$\Rightarrow(2 x-2) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}-2 x-5\right|$
$I_{2}=\int \frac{1}{x^{2}-2 x-5} d x$
$=\int \frac{1}{\left(x^{2}-2 x+1\right)-6} d x$
$=\int \frac{1}{(x-1)^{2}+(\sqrt{6})^{2}} d x$
$=\frac{1}{2 \sqrt{6}} \log \left(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right)$
Substituting (2) and (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{x+3}{x^{2}-2 x-5} d x & =\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{4}{2 \sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+\mathrm{C} \\
& =\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{2}{\sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+\mathrm{C}
\end{aligned}
$$

Q 23:

$\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}$
Answer:
Let $5 x+3=A \frac{d}{d x}\left(x^{2}+4 x+10\right)+B$
$\Rightarrow 5 x+3=A(2 x+4)+B$
Equating the coefficients of x and constant term, we obtain

$$
\begin{aligned}
& 2 A=5 \Rightarrow A=\frac{5}{2} \\
& 4 A+B=3 \Rightarrow B=-7 \\
& \therefore 5 x+3=\frac{5}{2}(2 x+4)-7 \\
& \Rightarrow \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{\frac{5}{\sqrt{2}}(2 x+4)-7}{\sqrt{x^{2}+4 x+10}} d x \\
& \quad=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x
\end{aligned}
$$

Let $I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$\therefore \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2} I_{1}-7 I_{2}$
Then, $I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$
Let $x^{2}+4 x+10=t$
$\therefore(2 x+4) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{t}=2 \sqrt{t}=2 \sqrt{x^{2}+4 x+10}$
$I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$=\int \frac{1}{\sqrt{\left(x^{2}+4 x+4\right)+6}} d x$
$=\int \frac{1}{(x+2)^{2}+(\sqrt{6})^{2}} d x$
$=\log \left|(x+2) \sqrt{x^{2}+4 x+10}\right|$
Using equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x & =\frac{5}{2}\left[2 \sqrt{x^{2}+4 x+10}\right]-7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+\mathrm{C} \\
& =5 \sqrt{x^{2}+4 x+10}-7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+\mathrm{C}
\end{aligned}
$$

Q 24:
$\int \frac{d x}{x^{2}+2 x+2}$ equals
A. $x \tan ^{-1}(x+1)+C$
B. $\tan ^{-1}(x+1)+C$
C. $(x+1) \tan ^{-1} x+C$
D. $\tan ^{-1} x+C$

Answer:

$$
\begin{aligned}
\int \frac{d x}{x^{2}+2 x+2} & =\int \frac{d x}{\left(x^{2}+2 x+1\right)+1} \\
& =\int \frac{1}{(x+1)^{2}+(1)^{2}} d x \\
& =\left[\tan ^{-1}(x+1)\right]+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is B.

Q 25:

$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$ equals
A. $\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+\mathrm{C}$
B. $\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+\mathrm{C}$
C. $\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+\mathrm{C}$
D. $\frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{9}\right)+\mathrm{C}$

Answer:

$$
\left.\begin{array}{l}
\int \frac{d x}{\sqrt{9 x-4 x^{2}}} \\
=\int \frac{1}{\sqrt{-4\left(x^{2}-\frac{9}{4} x\right)}} d x \\
=\int \frac{1}{-4\left(x^{2}-\frac{9}{4} x+\frac{81}{64}-\frac{81}{64}\right)^{2}} d x \\
=\int \frac{1}{\left.\sqrt{-4\left[\left(x-\frac{9}{8}\right)^{2}-\left(\frac{9}{8}\right)^{2}\right.}\right]} d x \\
=\frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{9}{8}\right)^{2}-\left(x-\frac{9}{8}\right)^{2}}} d x \\
=\frac{1}{2}\left[\operatorname { s i n } ^ { - 1 } \left(\frac{x-\frac{9}{8}}{\left.\left.\frac{9}{8}\right)\right]+\mathrm{C}}\right.\right. \\
=\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+\mathrm{C} \\
=\left(\int \frac{d y}{\sqrt{a^{2}-y^{2}}}\right.
\end{array} \sin ^{-1} \frac{y}{a}+\mathrm{C}\right)
$$

Hence, the correct Answer is B.

Exercise 7.5

Q 1:

$\frac{x}{(x+1)(x+2)}$
Answer:
Let $\frac{x}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
$\Rightarrow x=A(x+2)+B(x+1)$
Equating the coefficients of x and constant term, we obtain
$A+B=1$
$2 A+B=0$
On solving, we obtain
$A=-1$ and $B=2$
$\therefore \frac{x}{(x+1)(x+2)}=\frac{-1}{(x+1)}+\frac{2}{(x+2)}$
$\Rightarrow \int \frac{x}{(x+1)(x+2)} d x=\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} d x$

$$
=-\log |x+1|+2 \log |x+2|+\mathrm{C}
$$

$$
=\log (x+2)^{2}-\log |x+1|+C
$$

$$
=\log \frac{(x+2)^{2}}{(x+1)}+\mathrm{C}
$$

Q 2:
$\frac{1}{x^{2}-9}$
Answer:
Let $\frac{1}{(x+3)(x-3)}=\frac{A}{(x+3)}+\frac{B}{(x-3)}$
$1=A(x-3)+B(x+3)$

Equating the coefficients of x and constant term, we obtain
$A+B=0$
$-3 A+3 B=1$
On solving, we obtain
$A=-\frac{1}{6}$ and $B=\frac{1}{6}$
$\therefore \frac{1}{(x+3)(x-3)}=\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}$
$\Rightarrow \int \frac{1}{\left(x^{2}-9\right)} d x=\int\left(\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\right) d x$
$=-\frac{1}{6} \log |x+3|+\frac{1}{6} \log |x-3|+\mathrm{C}$
$=\frac{1}{6} \log \left|\frac{(x-3)}{(x+3)}\right|+\mathrm{C}$

Q 3:

$\frac{3 x-1}{(x-1)(x-2)(x-3)}$
Answer:
Let $\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$3 x-1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$
Substituting $x=1,2$, and 3 respectively in equation (1), we obtain

$$
\begin{aligned}
& A=1, B=-5, \text { and } C=4 \\
& \therefore \frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} \\
& \Rightarrow \int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}\right\} d x \\
& \quad=\log |x-1|-5 \log |x-2|+4 \log |x-3|+C
\end{aligned}
$$

Q4:
$\frac{x}{(x-1)(x-2)(x-3)}$
Answer
Let $\frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$x=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$
Substituting $x=1,2$, and 3 respectively in equation (1), we obta n
$A=\frac{1}{2}, B=-2$, and $C=\frac{3}{2}$
$\therefore \frac{x}{(x-1)(x-2)(x-3)}=\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}$
$\Rightarrow \int \frac{x}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\right\} d x$ $=\frac{1}{2} \log |x-1|-2 \log |x-2|+\frac{3}{2} \log |x-3|+\mathrm{C}$

Q 5:

$$
\frac{2 x}{x^{2}+3 x+2}
$$

Answer

$$
\begin{align*}
& \text { Let } \frac{2 x}{x^{2}+3 x+2}=\frac{A}{(x+1)}+\frac{B}{(x+2)} \\
& 2 x=A(x+2)+B(x+1) \tag{1}
\end{align*}
$$

Substituting $x=-1$ and -2 in equat on (1), we obtan $A=2$ and $B=4$

$$
\begin{aligned}
& \therefore \frac{2 x}{(x+1)(x+2)}=\frac{-2}{(x+1)}+\frac{4}{(x+2)} \\
& \Rightarrow \int \frac{2 x}{(x+1)(x+2)} d x=\int\left\{\frac{4}{(x+2)}-\frac{2}{(x+1)}\right\} d x \\
& =4 \log |x+2|-2 \log |x+1|+\mathrm{C}
\end{aligned}
$$

Qu 6:
$\frac{1-x^{2}}{x(1-2 x)}$
Answer
It can be seen that the given integrand is not a proper fraction.
Therefore, on dividing $\left(1-x^{2}\right)$ by $x(1-2 x)$, we obtain
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left(\frac{2-x}{x(1-2 x)}\right)$
Let $\frac{2-x}{x(1-2 x)}=\frac{A}{x}+\frac{B}{(1-2 x)}$
$\Rightarrow(2-x)=A(1-2 x)+B x$
Substituting $x=0$ and $\frac{1}{2}$ nequation (1), we obtain
$A=2$ and $B=3$
$\therefore \frac{2-x}{x(1-2 x)}=\frac{2}{x}+\frac{3}{1-2 x}$
Substituting in equation (1), we obta n

$$
\begin{aligned}
& \frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left\{\frac{2}{x}+\frac{3}{(1-2 x)}\right\} \\
& \begin{aligned}
\Rightarrow \int \frac{1-x^{2}}{x(1-2 x)} d x & =\int\left\{\frac{1}{2}+\frac{1}{2}\left(\frac{2}{x}+\frac{3}{1-2 x}\right)\right\} d x \\
& =\frac{x}{2}+\log |x|+\frac{3}{2(-2)} \log |1-2 x|+\mathrm{C} \\
& =\frac{x}{2}+\log |x|-\frac{3}{4} \log |1-2 x|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 7:

$$
\frac{x}{\left(x^{2}+1\right)(x-1)}
$$

Answer
Let $\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-1)}$

$$
\begin{aligned}
& x=(A x+B)(x-1)+C\left(x^{2}+1\right) \\
& x=A x^{2}-A x+B x-B+C x^{2}+C
\end{aligned}
$$

Equat ng the coefficients of x^{2}, x, and constant term, we obtan
$A+C=0$
$-A+B=1$
$-B+C=0$
On so ving these equat ons, we obtain

$$
A=-\frac{1}{2}, B=\frac{1}{2}, \text { and } C=\frac{1}{2}
$$

From equation (1), we obtan

$$
\begin{aligned}
& \therefore \frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{\left(-\frac{1}{2} x+\frac{1}{2}\right)}{x^{2}+1}+\frac{\frac{1}{2}}{(x-1)} \\
& \begin{aligned}
& \Rightarrow \int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{2} \int \frac{x}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x-1} d x \\
&=-\frac{1}{4} \int \frac{2 x}{x^{2}+1} d x+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Consider $\int \frac{2 x}{x^{2}+1} d x$, let $\left(x^{2}+1\right)=t \Rightarrow 2 x d x=d t$
$\Rightarrow \int \frac{2 x}{x^{2}+1} d x=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}+1\right|$

$$
\begin{aligned}
\therefore \int \frac{x}{\left(x^{2}+1\right)(x-1)} & =-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C} \\
& =\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+\mathrm{C}
\end{aligned}
$$

Q 8:
$\frac{x}{(x-1)^{2}(x+2)}$
Answer
Let $\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+2)}$
$x=A(x-1)(x+2)+B(x+2)+C(x-1)^{2}$
Substituting $x=1$, we obtain
$B=\frac{1}{3}$

Equating the coefficients of x^{2} and constant term, we obtain
$A+C=0$
$2 A+2 B+C=0$
On solv ng, we obtan
$A=\frac{2}{9}$ and $C=\frac{-2}{9}$
$\therefore \frac{x}{(x-1)^{2}(x+2)}=\frac{2}{9(x-1)}+\frac{1}{3(x-1)^{2}}-\frac{2}{9(x+2)}$
$\Rightarrow \int \frac{x}{(x-1)^{2}(x+2)} d x=\frac{2}{9} \int \frac{1}{(x-1)} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{(x+2)} d x$

$$
=\frac{2}{9} \log |x-1|+\frac{1}{3}\left(\frac{-1}{x-1}\right)-\frac{2}{9} \log |x+2|+\mathrm{C}
$$

$$
=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+\mathrm{C}
$$

Q 9:

$\frac{3 x+5}{x^{3}-x^{2}-x+1}$
Answer:
$\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{3 x+5}{(x-1)^{2}(x+1)}$
Let $\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)}$
$3 x+5=A(x-1)(x+1)+B(x+1)+C(x-1)^{2}$
$3 x+5=A\left(x^{2}-1\right)+B(x+1)+C\left(x^{2}+1-2 x\right)$
Substituting $x=1$ in equation (1), we obtain
$B=4$
Equating the coefficients of x^{2} and x, we obtain
$A+C=0$
$B-2 C=3$
On solving, we obtain
$A=-\frac{1}{2}$ and $C=\frac{1}{2}$

$$
\begin{aligned}
& \therefore \frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)} \\
& \begin{aligned}
\Rightarrow \int \frac{3 x+5}{(x-1)^{2}(x+1)} d x & =-\frac{1}{2} \int \frac{1}{x-1} d x+4 \int \frac{1}{(x-1)^{2}} d x+\frac{1}{2} \int \frac{1}{(x+1)} d x \\
& =-\frac{1}{2} \log |x-1|+4\left(\frac{-1}{x-1}\right)+\frac{1}{2} \log |x+1|+\mathrm{C} \\
& =\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|-\frac{4}{(x-1)}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 10:

$$
\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}
$$

Answer:

$$
\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}=\frac{2 x-3}{(x+1)(x-1)(2 x+3)}
$$

$$
\text { Let } \frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(2 x+3)}
$$

$$
\Rightarrow(2 x-3)=A(x-1)(2 x+3)+B(x+1)(2 x+3)+C(x+1)(x-1)
$$

$$
\Rightarrow(2 x-3)=A\left(2 x^{2}+x-3\right)+B\left(2 x^{2}+5 x+3\right)+C\left(x^{2}-1\right)
$$

$$
\Rightarrow(2 x-3)=(2 A+2 B+C) x^{2}+(A+5 B) x+(-3 A+3 B-C)
$$

Equating the coefficients of x^{2} and x, we obtain
$B=-\frac{1}{10}, A=\frac{5}{2}$, and $C=-\frac{24}{5}$

$$
\begin{aligned}
\therefore \frac{2 x-3}{(x+1)(x-1)(2 x+3)} & =\frac{5}{2(x+1)}-\frac{1}{10(x-1)}-\frac{24}{5(2 x+3)} \\
\Rightarrow \int \frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)} d x & =\frac{5}{2} \int \frac{1}{(x+1)} d x-\frac{1}{10} \int \frac{1}{x-1} d x-\frac{24}{5} \int \frac{1}{(2 x+3)} d x \\
& =\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{24}{5 \times 2} \log |2 x+3| \\
& =\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{12}{5} \log |2 x+3|+\mathrm{C}
\end{aligned}
$$

Q 11:

$\frac{5 x}{(x+1)\left(x^{2}-4\right)}$

Answer:

$\frac{5 x}{(x+1)\left(x^{2}-4\right)}=\frac{5 x}{(x+1)(x+2)(x-2)}$
Let $\frac{5 x}{(x+1)(x+2)(x-2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}+\frac{C}{(x-2)}$
$5 x=A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$
Substituting $x=-1,-2$, and 2 respectively in equation (1), we obtain

$$
\begin{aligned}
& A=\frac{5}{3}, B=-\frac{5}{2}, \text { and } C
\end{aligned}=\frac{5}{6}, \begin{aligned}
\therefore \frac{5 x}{(x+1)(x+2)(x-2)} & =\frac{5}{3(x+1)}-\frac{5}{2(x+2)}+\frac{5}{6(x-2)} \\
\Rightarrow \int \frac{5 x}{(x+1)\left(x^{2}-4\right)} d x & =\frac{5}{3} \int \frac{1}{(x+1)} d x-\frac{5}{2} \int \frac{1}{(x+2)} d x+\frac{5}{6} \int \frac{1}{(x-2)} d x \\
& =\frac{5}{3} \log |x+1|-\frac{5}{2} \log |x+2|+\frac{5}{6} \log |x-2|+\mathrm{C}
\end{aligned}
$$

Q 12:

$\frac{x^{3}+x+1}{x^{2}-1}$

Answer:
It can be seen that the given integrand is not a proper fraction.
Therefore, on dividing $\left(x^{3}+x+1\right)$ by $x^{2}-1$, we obtain
$\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{2 x+1}{x^{2}-1}$
Let $\frac{2 x+1}{x^{2}-1}=\frac{A}{(x+1)}+\frac{B}{(x-1)}$
$2 x+1=A(x-1)+B(x+1)$
Substituting $x=1$ and -1 in equation (1), we obtain
$A=\frac{1}{2}$ and $B=\frac{3}{2}$
$\therefore \frac{x^{3}+x+1}{x^{2}-1}=x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
$\Rightarrow \int \frac{x^{3}+x+1}{x^{2}-1} d x=\int x d x+\frac{1}{2} \int \frac{1}{(x+1)} d x+\frac{3}{2} \int \frac{1}{(x-1)} d x$ $=\frac{x^{2}}{2}+\frac{1}{2} \log |x+1|+\frac{3}{2} \log |x-1|+\mathrm{C}$

Q 13:

$\frac{2}{(1-x)\left(1+x^{2}\right)}$
Answer:
Let $\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{(1-x)}+\frac{B x+C}{\left(1+x^{2}\right)}$
$2=A\left(1+x^{2}\right)+(B x+C)(1-x)$
$2=A+A x^{2}+B x-B x^{2}+C-C x$
Equating the coefficient of x^{2}, x, and constant term, we obtain
$A-B=0$
$B-C=0$
$A+C=2$

On solving these equations, we obtain
$A=1, B=1$, and $C=1$

$$
\begin{aligned}
& \therefore \frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{1}{1-x}+\frac{x+1}{1+x^{2}} \\
& \begin{aligned}
\Rightarrow \int \frac{2}{(1-x)\left(1+x^{2}\right)} d x & =\int \frac{1}{1-x} d x+\int \frac{x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x \\
& =-\int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x \\
& =-\log |x-1|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+C
\end{aligned}
\end{aligned}
$$

Q 14:

$$
\frac{3 x-1}{(x+2)^{2}}
$$

Answer:

$$
\begin{aligned}
& \text { Let } \frac{3 x-1}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}} \\
& \Rightarrow 3 x-1=A(x+2)+B
\end{aligned}
$$

Equating the coefficient of x and constant term, we obtain $A=3$
$2 A+B=-1 \Rightarrow B=-7$
$\therefore \frac{3 x-1}{(x+2)^{2}}=\frac{3}{(x+2)}-\frac{7}{(x+2)^{2}}$
$\Rightarrow \int \frac{3 x-1}{(x+2)^{2}} d x=3 \int \frac{1}{(x+2)} d x-7 \int \frac{x}{(x+2)^{2}} d x$

$$
=3 \log |x+2|-7\left(\frac{-1}{(x+2)}\right)+\mathrm{C}
$$

$$
=3 \log |x+2|+\frac{7}{(x+2)}+C
$$

Q 15:
$\frac{1}{x^{4}-1}$
Answer:

$$
\begin{aligned}
& \frac{1}{\left(x^{4}-1\right)}=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{1}{(x+1)(x-1)\left(1+x^{2}\right)} \\
& \text { Let } \frac{1}{(x+1)(x-1)\left(1+x^{2}\right)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C x+D}{\left(x^{2}+1\right)} \\
& 1=A(x-1)\left(x^{2}+1\right)+B(x+1)\left(x^{2}+1\right)+(C x+D)\left(x^{2}-1\right) \\
& 1=A\left(x^{3}+x-x^{2}-1\right)+B\left(x^{3}+x+x^{2}+1\right)+C x^{3}+D x^{2}-C x-D \\
& 1=(A+B+C) x^{3}+(-A+B+D) x^{2}+(A+B-C) x+(-A+B-D)
\end{aligned}
$$

Equating the coefficient of x^{3}, x^{2}, x, and constant term, we obtain

$$
\begin{aligned}
& A+B+C=0 \\
& -A+B+D=0 \\
& A+B-C=0 \\
& -A+B-D=1
\end{aligned}
$$

On solving these equations, we obtain
$A=-\frac{1}{4}, B=\frac{1}{4}, C=0$, and $D=-\frac{1}{2}$

$$
\begin{aligned}
& \therefore \frac{1}{x^{4}-1}=\frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2\left(x^{2}+1\right)} \\
& \begin{aligned}
& \Rightarrow \int \frac{1}{x^{4}-1} d x=-\frac{1}{4} \log |x-1|+\frac{1}{4} \log |x-1|-\frac{1}{2} \tan ^{-1} x+C \\
& \quad=\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
\end{aligned}
$$

Q 16:

$\frac{1}{x\left(x^{n}+1\right)}$
[Hint: multiply numerator and denominator by x^{n-1} and put $x^{n}=t$]
Answer:

$$
\frac{1}{x\left(x^{n}+1\right)}
$$

Multiplying numerator and denominator by x^{n-1}, we obtain

$$
\frac{1}{x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n-1} x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}
$$

Let $x^{n}=t \Rightarrow x^{n-1} d x=d t$
$\therefore \int \frac{1}{x\left(x^{n}+1\right)} d x=\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{1}{t(t+1)} d t$
Let $\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{(t+1)}$
$1=A(1+t)+B t$
Substituting $t=0,-1$ in equation (1), we obtain
$A=1$ and $B=-1$
$\therefore \frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{(1+t)}$
$\Rightarrow \int \frac{1}{x\left(x^{n}+1\right)} d x=\frac{1}{n} \int\left\{\frac{1}{t}-\frac{1}{(t+1)}\right\} d x$
$=\frac{1}{n}[\log |t|-\log |t+1|]+C$
$=-\frac{1}{n}\left[\log \left|x^{n}\right|-\log \left|x^{n}+1\right|\right]+\mathrm{C}$
$=\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+\mathrm{C}$

Q 17:
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$ [Hint: Put $\left.\sin x=t\right]$
Answer:
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$
Let $\sin x=t \Rightarrow \cos x d x=d t$
$\therefore \int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int \frac{d t}{(1-t)(2-t)}$
Let $\frac{1}{(1-t)(2-t)}=\frac{A}{(1-t)}+\frac{B}{(2-t)}$
$1=A(2-t)+B(1-t)$
Substituting $t=2$ and then $t=1$ in equation (1), we obtain
$A=1$ and $B=-1$

$$
\therefore \frac{1}{(1-t)(2-t)}=\frac{1}{(1-t)}-\frac{1}{(2-t)}
$$

$$
\Rightarrow \int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int\left\{\frac{1}{1-t}-\frac{1}{(2-t)}\right\} d t
$$

$$
=-\log |1-t|+\log |2-t|+\mathrm{C}
$$

$$
=\log \left|\frac{2-t}{1-t}\right|+\mathrm{C}
$$

$$
=\log \left|\frac{2-\sin x}{1-\sin x}\right|+C
$$

Q 18:

$$
\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}
$$

Answer:

$$
\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}
$$

Let $\frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+3\right)}+\frac{C x+D}{\left(x^{2}+4\right)}$
$4 x^{2}+10=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+3\right)$
$4 x^{2}+10=A x^{3}+4 A x+B x^{2}+4 B+C x^{3}+3 C x+D x^{2}+3 D$
$4 x^{2}+10=(A+C) x^{3}+(B+D) x^{2}+(4 A+3 C) x+(4 B+3 D)$
Equating the coefficients of x^{3}, x^{2}, x, and constant term, we obtain
$A+C=0$
$B+D=4$
$4 A+3 C=0$
$4 B+3 D=10$
On solving these equations, we obtain
$A=0, B=-2, C=0$, and $D=6$
$\therefore \frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}$

$$
\begin{aligned}
& \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\left(\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right) \\
& \begin{aligned}
\Rightarrow \int \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} d x & =\int\left\{1+\frac{2}{\left(x^{2}+3\right)}-\frac{6}{\left(x^{2}+4\right)}\right\} d x \\
& =\int\left\{1+\frac{2}{x^{2}+(\sqrt{3})^{2}}-\frac{6}{x^{2}+2^{2}}\right\} \\
& =x+2\left(\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right)-6\left(\frac{1}{2} \tan ^{-1} \frac{x}{2}\right)+\mathrm{C} \\
& =x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-3 \tan ^{-1} \frac{x}{2}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 19:
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
Answer:

$$
\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}
$$

$$
\text { Let } x^{2}=t \Rightarrow 2 x d x=d t
$$

$$
\begin{equation*}
\therefore \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)} \tag{1}
\end{equation*}
$$

$$
\text { Let } \frac{1}{(t+1)(t+3)}=\frac{A}{(t+1)}+\frac{B}{(t+3)}
$$

$$
\begin{equation*}
1=A(t+3)+B(t+1) \tag{1}
\end{equation*}
$$

Substituting $t=-3$ and $t=-1$ in equation (1), we obtain

$$
\begin{aligned}
& A=\frac{1}{2} \text { and } B=-\frac{1}{2} \\
& \begin{aligned}
\therefore \frac{1}{(t+1)(t+3)}=\frac{1}{2(t+1)}-\frac{1}{2(t+3)} \\
\begin{aligned}
\Rightarrow \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x & =\int\left\{\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right\} d t \\
& =\frac{1}{2} \log |(t+1)|-\frac{1}{2} \log |t+3|+\mathrm{C} \\
& =\frac{1}{2} \log \left|\frac{t+1}{t+3}\right|+\mathrm{C} \\
& =\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+\mathrm{C}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Q 20:
$\frac{1}{x\left(x^{4}-1\right)}$
Answer:
$\frac{1}{x\left(x^{4}-1\right)}$
Multiplying numerator and denominator by x^{3}, we obtain
$\frac{1}{x\left(x^{4}-1\right)}=\frac{x^{3}}{x^{4}\left(x^{4}-1\right)}$
$\therefore \int \frac{1}{x\left(x^{4}-1\right)} d x=\int \frac{x^{3}}{x^{4}\left(x^{4}-1\right)} d x$

Let $x^{4}=t \Rightarrow 4 x^{3} d x=d t$
$\therefore \int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int \frac{d t}{t(t-1)}$

Let $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{(t-1)}$
$1=A(t-1)+B t$

Substituting $t=0$ and $1 \mathrm{n}(1)$ we obtain
$A=1$ and $B=1$
$\Rightarrow \frac{1}{t(t+1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int\left\{\frac{-1}{t}+\frac{1}{t-1}\right\} d t$

$$
=\frac{1}{4}[-\log |t|+\log |t-1|]+C
$$

$$
=\frac{1}{4} \log \left|\frac{t-1}{t}\right|+\mathrm{C}
$$

$$
=\frac{1}{4} \log \left|\frac{x^{4}-1}{x^{4}}\right|+\mathrm{C}
$$

Q 21:
$\frac{1}{\left(e^{x}-1\right)} \quad\left[\right.$ Hint: Put $\left.e^{x}=t\right]$
Answer:
$\frac{1}{\left(e^{x}-1\right)}$

Let $e^{x}=t \Rightarrow e^{x} d x=d t$
$\Rightarrow \int \frac{1}{e^{x}-1} d x=\int \frac{1}{t-1} \times \frac{d t}{t}=\int \frac{1}{t(t-1)} d t$

Let $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}$
$1=A(t-1)+B t$
Substituting $t=1$ and $t=0$ in equation (1), we obtain
$A=1$ and $B=1$
$\therefore \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{t(t-1)} d t=\log \left|\frac{t-1}{t}\right|+\mathrm{C}$
$=\log \left|\frac{e^{x}-1}{e^{x}}\right|+\mathrm{C}$

Q 22:
$\int \frac{x d x}{(x-1)(x-2)}$ equals
A. $\quad \log \left|\frac{(x-1)^{2}}{x-2}\right|+$ C
B. $\quad \log \left|\frac{(x-2)^{2}}{x-1}\right|+$ C
C. $\log \left|\left(\frac{x-1}{x-2}\right)^{2}\right|+C$
D. $\quad \log |(x-1)(x-2)|+C$

Answer:
Let $\frac{x}{(x-1)(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}$
$x=A(x-2)+B(x-1)$
Substituting $x=1$ and 2 n (1), we obtain
$A=1$ and $B=2$

$$
\begin{aligned}
& \therefore \frac{x}{(x-1)(x-2)}=-\frac{1}{(x-1)}+\frac{2}{(x-2)} \\
& \begin{aligned}
\Rightarrow \int \frac{x}{(x-1)(x-2)} d x & =\int\left\{\frac{-1}{(x-1)}+\frac{2}{(x-2)}\right\} d x \\
& =-\log |x-1|+2 \log |x-2|+\mathrm{C} \\
& =\log \left|\frac{(x-2)^{2}}{x-1}\right|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Hence, the correct Answer is B

Q 23:

$\int \frac{d x}{x\left(x^{2}+1\right)}$ equals
A. $\log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+\mathrm{C}$
B. $\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+\mathrm{C}$
C. $-\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+\mathrm{C}$
D. $\frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+C$

Answer:
Let $\frac{1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
$1=A\left(x^{2}+1\right)+(B x+C) x$
Equating the coeff cients of x^{2}, x, and constant term, we obtain
$A+B=0$
$C=0$
$A=1$
On solving these equations, we obtain
$A=1, B=-1$, and $C=0$
$\therefore \frac{1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{-x}{x^{2}+1}$
$\Rightarrow \int \frac{1}{x\left(x^{2}+1\right)} d x=\int\left\{\frac{1}{x}-\frac{x}{x^{2}+1}\right\} d x$

$$
=\log |x|-\frac{1}{2} \log \left|x^{2}+1\right|+\mathrm{C}
$$

Hence, the correct Answer is A.

Exercise 7.6

Q 1:

$x \sin x$
Answer:
Let $I=\int x \sin x d x$
Taking x as first function and $\sin x$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x \int \sin x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin x d x\right\} d x \\
& =x(-\cos x)-\int 1 \cdot(-\cos x) d x \\
& =-x \cos x+\sin x+C
\end{aligned}
$$

Q 2:

$x \sin 3 x$
Answer:
Let $I=\int x \sin 3 x d x$
Taking x as first function and $\sin 3 x$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x \int \sin 3 x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin 3 x d x\right\} \\
& =x\left(\frac{-\cos 3 x}{3}\right)-\int 1 \cdot\left(\frac{-\cos 3 x}{3}\right) d x \\
& =\frac{-x \cos 3 x}{3}+\frac{1}{3} \int \cos 3 x d x \\
& =\frac{-x \cos 3 x}{3}+\frac{1}{9} \sin 3 x+C
\end{aligned}
$$

Q3:
$x^{2} e^{x}$

Answer:

Let $I=\int x^{2} e^{x} d x$
Taking x^{2} as first function and e^{x} as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x^{2} \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x^{2}\right) \int e^{x} d x\right\} d x \\
& =x^{2} e^{x}-\int 2 x \cdot e^{x} d x \\
& =x^{2} e^{x}-2 \int x \cdot e^{x} d x
\end{aligned}
$$

Again integrating by parts, we obtain

$$
\begin{aligned}
& =x^{2} e^{x}-2\left[x \cdot \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \cdot \int e^{x} d x\right\} d x\right] \\
& =x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right] \\
& =x^{2} e^{x}-2\left[x e^{x}-e^{x}\right] \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+\mathrm{C} \\
& =e^{x}\left(x^{2}-2 x+2\right)+\mathrm{C}
\end{aligned}
$$

Q 4:

$x \log x$

Answer:
Let $I=\int x \log x d x$
Taking $\log x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x \\
& =\log x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \log x}{2}-\int \frac{x}{2} d x \\
& =\frac{x^{2} \log x}{2}-\frac{x^{2}}{4}+C
\end{aligned}
$$

Q 5:

$x \log 2 x$
Answer:
Let $I=\int x \log 2 x d x$
Taking $\log 2 x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\log 2 x \int x d x-\int\left\{\left(\frac{d}{d x} 2 \log x\right) \int x d x\right\} d x \\
& =\log 2 x \cdot \frac{x^{2}}{2}-\int \frac{2}{2 x} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \log 2 x}{2}-\int \frac{x}{2} d x \\
& =\frac{x^{2} \log 2 x}{2}-\frac{x^{2}}{4}+\mathrm{C}
\end{aligned}
$$

Q 6:

$x^{2} \log x$
Answer:
Let $I=\int x^{2} \log x d x$
Taking $\log x$ as first function and x^{2} as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\log x \int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x \\
& =\log x\left(\frac{x^{3}}{3}\right)-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x \\
& =\frac{x^{3} \log x}{3}-\int \frac{x^{2}}{3} d x \\
& =\frac{x^{3} \log x}{3}-\frac{x^{3}}{9}+\mathrm{C}
\end{aligned}
$$

Q 7:

$x \sin ^{-1} x$
Answer:
Let $I=\int x \sin ^{-1} x d x$
Taking $\sin ^{-1} x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\sin ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int x d x\right\} d x \\
& =\sin ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\frac{1-x^{2}}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\right\} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\sqrt{1-x^{2}}-\frac{1}{\sqrt{1-x^{2}}}\right\} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\int \sqrt{1-x^{2}} d x-\int \frac{1}{\sqrt{1-x^{2}}} d x\right\} \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x-\sin ^{-1} x\right\}+\mathrm{C} \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{x}{4} \sqrt{1-x^{2}}+\frac{1}{4} \sin ^{-1} x-\frac{1}{2} \sin ^{-1} x+\mathrm{C} \\
& =\frac{1}{4}\left(2 x^{2}-1\right) \sin ^{-1} x+\frac{x}{4} \sqrt{1-x^{2}}+\mathrm{C}
\end{aligned}
$$

Q 8:

$x \tan ^{-1} x$
Answer:
Let $I=\int x \tan ^{-1} x d x$

Taking $\tan ^{-1} x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\tan ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int x d x\right\} d x \\
& =\tan ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{1+x^{2}} \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left(\frac{x^{2}+1}{1+x^{2}}-\frac{1}{1+x^{2}}\right) d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2}\left(x-\tan ^{-1} x\right)+\mathrm{C} \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{x}{2}+\frac{1}{2} \tan ^{-1} x+\mathrm{C}
\end{aligned}
$$

Q 9:

$$
x \cos ^{-1} x
$$

Answer:
Let $I=\int x \cos ^{-1} x d x$
Taking $\cos ^{-1} x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{align*}
I & =\cos ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int x d x\right\} d x \\
& =\cos ^{-1} x \frac{x^{2}}{2}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int\left\{\sqrt{1-x^{2}}+\left(\frac{-1}{\sqrt{1-x^{2}}}\right)\right\} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \sqrt{1-x^{2}} d x-\frac{1}{2} \int\left(\frac{-1}{\sqrt{1-x^{2}}}\right) d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} I_{1}-\frac{1}{2} \cos ^{-1} x \tag{1}
\end{align*}
$$

where, $I_{1}=\int \sqrt{1-x^{2}} d x$

$$
\begin{aligned}
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{d}{d x} \sqrt{1-x^{2}} \int x d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{-2 x}{2 \sqrt{1-x^{2}}} x d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\left\{\int \sqrt{1-x^{2}} d x+\int \frac{-d x}{\sqrt{1-x^{2}}}\right\} \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\left\{I_{1}+\cos ^{-1} x\right\} \\
& \Rightarrow 2 I_{1}=x \sqrt{1-x^{2}}-\cos ^{-1} x \\
& \therefore I_{1}=\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x
\end{aligned}
$$

Substituting in (1), we obtain

$$
\begin{aligned}
I & =\frac{x \cos ^{-1} x}{2}-\frac{1}{2}\left(\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x\right)-\frac{1}{2} \cos ^{-1} x \\
& =\frac{\left(2 x^{2}-1\right)}{4} \cos ^{-1} x-\frac{x}{4} \sqrt{1-x^{2}}+\mathrm{C}
\end{aligned}
$$

Q 10:
$\left(\sin ^{-1} x\right)^{2}$
Answer:
Let $I=\int\left(\sin ^{-1} x\right)^{2} \cdot 1 d x$

Taking $\left(\sin ^{-1} x\right)^{2}$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\left(\sin ^{-1} x\right) \int 1 d x-\int\left\{\frac{d}{d x}\left(\sin ^{-1} x\right)^{2} \cdot \int 1 \cdot d x\right\} d x \\
& =\left(\sin ^{-1} x\right)^{2} \cdot x-\int \frac{2 \sin ^{-1} x}{\sqrt{1-x^{2}}} \cdot x d x \\
& =x\left(\sin ^{-1} x\right)^{2}+\int \sin ^{-1} x \cdot\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right) d x \\
& =x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right] \\
& =x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right] \\
& =x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-\int 2 d x \\
& =x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-2 x+\mathrm{C}
\end{aligned}
$$

Q 11:
$\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}$
Answer

$$
I=\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} d x
$$

Let $\quad I=\frac{-1}{2} \int \frac{-2 x}{\sqrt{1-x^{2}}} \cdot \cos ^{-1} x d x$
Taking $\cos ^{-1} x$ as first function and $\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right)$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\frac{-1}{2}\left[\cos ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right] \\
& =\frac{-1}{2}\left[\cos ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right] \\
& =\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+\int 2 d x\right] \\
& =\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+2 x\right]+\mathrm{C} \\
& =-\left[\sqrt{1-x^{2}} \cos ^{-1} x+x\right]+\mathrm{C}
\end{aligned}
$$

Q 12:

$x \sec ^{2} x$
Answer:
Let $I=\int x \sec ^{2} x d x$
Taking x as first function and $\sec ^{2} x$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x \int \sec ^{2} x d x-\int\left\{\left\{\frac{d}{d x} x\right\} \int \sec ^{2} x d x\right\} d x \\
& =x \tan x-\int 1 \cdot \tan x d x \\
& =x \tan x+\log |\cos x|+\mathrm{C}
\end{aligned}
$$

Q 13:

$\tan ^{-1} x$
Answer:

$$
\text { Let } I=\int 1 \cdot \tan ^{-1} x d x
$$

Taking $\tan ^{-1} x$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\tan ^{-1} x \int 1 d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int 1 \cdot d x\right\} d x \\
& =\tan ^{-1} x \cdot x-\int \frac{1}{1+x^{2}} \cdot x d x \\
& =x \tan ^{-1} x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x \\
& =x \tan ^{-1} x-\frac{1}{2} \log \left|1+x^{2}\right|+\mathrm{C} \\
& =x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+\mathrm{C}
\end{aligned}
$$

Q 14:

$x(\log x)^{2}$
Answer:

$$
I=\int x(\log x)^{2} d x
$$

Taking $(\log x)^{2}$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =(\log x)^{2} \int x d x-\int\left[\left\{\left(\frac{d}{d x} \log x\right)^{2}\right\} \int x d x\right] d x \\
& =\frac{x^{2}}{2}(\log x)^{2}-\left[\int 2 \log x \cdot \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\int x \log x d x
\end{aligned}
$$

Again integrating by parts, we obtain

$$
\begin{aligned}
I & =\frac{x^{2}}{2}(\log x)^{2}-\left[\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\left[\frac{x^{2}}{2}-\log x-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{1}{2} \int x d x \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4}+\mathrm{C}
\end{aligned}
$$

Q 15:

$\left(x^{2}+1\right) \log x$
Answer:
Let $I=\int\left(x^{2}+1\right) \log x d x=\int x^{2} \log x d x+\int \log x d x$
Let $I=I_{1}+I_{2} \ldots$ (1)
Where, $I_{1}=\int x^{2} \log x d x$ and $I_{2}=\int \log x d x$
$I_{1}=\int x^{2} \log x d x$
Taking $\log x$ as first function and x^{2} as second function and integrating by parts, we obtain

$$
\begin{align*}
I_{1} & =\log x-\int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x \\
& =\log x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x \\
& =\frac{x^{3}}{3} \log x-\frac{1}{3}\left(\int x^{2} d x\right) \\
& =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+\mathrm{C}_{1} \tag{2}\\
I_{2} & =\int \log x d x
\end{align*}
$$

Taking $\log x$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{align*}
I_{2} & =\log x \int 1 \cdot d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int 1 \cdot d x\right\} \\
& =\log x \cdot x-\int \frac{1}{x} \cdot x d x \\
& =x \log x-\int 1 d x \\
& =x \log x-x+C_{2} \tag{3}
\end{align*}
$$

Using equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
I & =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+\mathrm{C}_{1}+x \log x-x+\mathrm{C}_{2} \\
& =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+x \log x-x+\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
& =\left(\frac{x^{3}}{3}+x\right) \log x-\frac{x^{3}}{9}-x+\mathrm{C}
\end{aligned}
$$

Q 16:

$e^{x}(\sin x+\cos x)$
Answer:
Let $I=\int e^{x}(\sin x+\cos x) d x$
Let $f(x)=\sin x$
$\square f^{\prime}(x)=\cos x$
$I=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore I=e^{x} \sin x+C$

Q 17:
$\frac{x e^{x}}{(1+x)^{2}}$

Answer:

Let $I=\int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{\frac{x}{(1+x)^{2}}\right\} d x$
$=\int e^{x}\left\{\frac{1+x-1}{(1+x)^{2}}\right\} d x$
$=\int e^{x}\left\{\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right\} d x$
Let $f(x)=\frac{1}{1+x} \quad f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$
$\Rightarrow \int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore \int \frac{x e^{x}}{(1+x)^{2}} d x=\frac{e^{x}}{1+x}+\mathrm{C}$

Q 18:

$$
e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)
$$

Answer:
$e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)$
$=e^{x}\left(\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right)$
$=\frac{e^{x}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}$
$=\frac{1}{2} e^{x} \cdot\left(\frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\cos \frac{x}{2}}\right)^{2}$
$=\frac{1}{2} e^{x}\left[\tan \frac{x}{2}+1\right]^{2}$
$=\frac{1}{2} e^{2}\left(1+\tan \frac{x}{2}\right)^{2}$
$=\frac{1}{2} e^{x}\left[1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]$
$=\frac{1}{2} e^{x}\left[\sec ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]$
$\frac{e^{x}(1+\sin x) d x}{(1+\cos x)}=e^{x}\left[\frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right]$
Let $\tan \frac{x}{2}=f(x) \quad f^{\prime}(x)=\frac{1}{2} \sec ^{2} \frac{x}{2}$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
From equation (1), we obtain
$\int \frac{e^{x}(1+\sin x)}{(1+\cos x)} d x=e^{x} \tan \frac{x}{2}+\mathrm{C}$

Q 19:
$e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)$
Answer:
Let $I=\int e^{x}\left[\frac{1}{x}-\frac{1}{x^{2}}\right] d x$
Also, let $\frac{1}{x}=f(x)_{\square} \quad f^{\prime}(x)=\frac{-1}{x^{2}}$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore I=\frac{e^{x}}{x}+\mathrm{C}$

Q 20:
$\frac{(x-3) e^{x}}{(x-1)^{3}}$
Answer:

$$
\begin{aligned}
\int e^{x}\left\{\frac{x-3}{(x-1)^{3}}\right\} d x & =\int e^{x}\left\{\frac{x-1-2}{(x-1)^{3}}\right\} d x \\
& =\int e^{x}\left\{\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right\} d x
\end{aligned}
$$

Let $f(x)=\frac{1}{(x-1)^{2}} \quad f^{\prime}(x)=\frac{-2}{(x-1)^{3}}$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore \int e^{x}\left\{\frac{(x-3)}{(x-1)^{2}}\right\} d x=\frac{e^{x}}{(x-1)^{2}}+\mathrm{C}$

Q 21:
$e^{2 x} \sin x$

Answer:
Let $I=\int e^{2 x} \sin x d x$
Integrating by parts, we obtain
$I=\sin x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \sin x\right) \int e^{2 x} d x\right\} d x$
$\Rightarrow I=\sin x \cdot \frac{e^{2 x}}{2}-\int \cos x \cdot \frac{e^{2 x}}{2} d x$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2} \int e^{2 x} \cos x d x$
Again integrating by parts, we obtain

$$
\begin{aligned}
& I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\cos x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \cos x\right) \int e^{2 x} d x\right\} d x\right] \\
& \Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \cdot \frac{e^{2 x}}{2}-\int(-\sin x) \frac{e^{2 x}}{2} d x\right] \\
& \Rightarrow I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\frac{e^{2 x} \cos x}{2}+\frac{1}{2} \int e^{2 x} \sin x d x\right] \\
& \Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}-\frac{1}{4} I \\
& \Rightarrow I+\frac{1}{4} I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{e^{2 x} \cos x}{4} \\
& \Rightarrow \frac{5}{4} I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4} \\
& \Rightarrow I=\frac{4}{5}\left[\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}\right]+\mathrm{C} \\
& \Rightarrow I=\frac{e^{2 x}}{5}[2 \sin x-\cos x]+\mathrm{C}
\end{aligned}
$$

Q 22:
$\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
Answer:
Let $x=\tan \theta \square d x=\sec ^{2} \theta d \theta$
$\therefore \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\int \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=\int 2 \theta \cdot \sec ^{2} \theta d \theta=2 \int \theta \cdot \sec ^{2} \theta d \theta$
Integrating by parts, we obtain
$2\left[\theta \cdot \int \sec ^{2} \theta d \theta-\int\left\{\left(\frac{d}{d \theta} \theta\right) \int \sec ^{2} \theta d \theta\right\} d \theta\right]$
$=2\left[\theta \cdot \tan \theta-\int \tan \theta d \theta\right]$
$=2[\theta \tan \theta+\log |\cos \theta|]+\mathrm{C}$
$=2\left[x \tan ^{-1} x+\log \left|\frac{1}{\sqrt{1+x^{2}}}\right|\right]+\mathrm{C}$
$=2 x \tan ^{-1} x+2 \log \left(1+x^{2}\right)^{-\frac{1}{2}}+\mathrm{C}$
$=2 x \tan ^{-1} x+2\left[-\frac{1}{2} \log \left(1+x^{2}\right)\right]+\mathrm{C}$
$=2 x \tan ^{-1} x-\log \left(1+x^{2}\right)+C$

Q 23:

$\int x^{2} e^{x^{3}} d x$ equals
(A) $\frac{1}{3} e^{x^{3}}+\mathrm{C}$
(B) $\frac{1}{3} e^{x^{2}}+\mathrm{C}$
(C) $\frac{1}{2} e^{x^{3}}+\mathrm{C}$
(D) $\frac{1}{3} e^{x^{2}}+\mathrm{C}$

Answer:
Let $I=\int x^{2} e^{x^{3}} d x$
Also, let $x^{3}=t \square 3 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow I & =\frac{1}{3} \int e^{t} d t \\
& =\frac{1}{3}\left(e^{t}\right)+\mathrm{C} \\
& =\frac{1}{3} e^{x^{3}}+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is A.

Q 24:
$\int e^{x} \sec x(1+\tan x) d x$ equals
(A) $e^{x} \cos x+\mathrm{C}$
(B) $e^{x} \sec x+\mathrm{C}$
(C) $e^{x} \sin x+\mathrm{C}$
(D) $e^{x} \tan x+\mathrm{C}$

Answer:
$\int e^{x} \sec x(1+\tan x) d x$
Let $I=\int e^{x} \sec x(1+\tan x) d x=\int e^{x}(\sec x+\sec x \tan x) d x$
Also, let $\sec x=f(x)_{\square} \sec x \tan x=f^{\prime}(x)$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore I=e^{x} \sec x+C$
Hence, the correct Answer is B.

Exercise 7.7

Q 1:
$\sqrt{4-x^{2}}$
Answer:
Let $I=\int \sqrt{4-x^{2}} d x=\int \sqrt{(2)^{2}-(x)^{2}} d x$
It is known that, $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}} \frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$

$$
\begin{aligned}
\therefore I & =\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}+\mathrm{C} \\
& =\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{2}+\mathrm{C}
\end{aligned}
$$

Q 2:

$\sqrt{1-4 x^{2}}$

Answer:

Let $I=\int \sqrt{1-4 x^{2}} d x=\int \sqrt{(1)^{2}-(2 x)^{2}} d x$
Let $2 x=t \Rightarrow 2 d x=d t$
$\therefore I=\frac{1}{2} \int \sqrt{(1)^{2}-(t)^{2}} d t$

It is known that, $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$

$$
\begin{aligned}
\Rightarrow I & =\frac{1}{2}\left[\frac{t}{2} \sqrt{1-t^{2}}+\frac{1}{2} \sin ^{-1} t\right]+\mathrm{C} \\
& =\frac{t}{4} \sqrt{1-t^{2}}+\frac{1}{4} \sin ^{-1} t+\mathrm{C} \\
& =\frac{2 x}{4} \sqrt{1-4 x^{2}}+\frac{1}{4} \sin ^{-1} 2 x+\mathrm{C} \\
& =\frac{x}{2} \sqrt{1-4 x^{2}}+\frac{1}{4} \sin ^{-1} 2 x+\mathrm{C}
\end{aligned}
$$

Q 3:

$$
\sqrt{x^{2}+4 x+6}
$$

Answer:

Let $I=\int \sqrt{x^{2}+4 x+6} d x$

$$
\begin{aligned}
& =\int \sqrt{x^{2}+4 x+4+2} d x \\
& =\int \sqrt{\left(x^{2}+4 x+4\right)+2} d x \\
& =\int \sqrt{(x+2)^{2}+(\sqrt{2})^{2}} d x
\end{aligned}
$$

It is known that, $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$

$$
\begin{aligned}
\therefore I & =\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\frac{2}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+\mathrm{C} \\
& =\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+\mathrm{C}
\end{aligned}
$$

Q 4:

$$
\sqrt{x^{2}+4 x+1}
$$

Answer:
Let $I=\int \sqrt{x^{2}+4 x+1} d x$

$$
=\int \sqrt{\left(x^{2}+4 x+4\right)-3} d x
$$

$$
=\int \sqrt{(x+2)^{2}-(\sqrt{3})^{2}} d x
$$

It is known that, $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
$\therefore I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x+1}-\frac{3}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+1}\right|+\mathrm{C}$

Q 5:
$\sqrt{1-4 x-x^{2}}$

Answer

$$
\text { Let } \begin{aligned}
I & =\int \sqrt{1-4 x-x^{2}} d x \\
& =\int \sqrt{1-\left(x^{2}+4 x+4-4\right)} d x \\
& =\int \sqrt{1+4-(x+2)^{2}} d x \\
& =\int \sqrt{(\sqrt{5})^{2}-(x+2)^{2}} d x
\end{aligned}
$$

It is known that, $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
$\therefore I=\frac{(x+2)}{2} \sqrt{1-4 x-x^{2}}+\frac{5}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+\mathrm{C}$

Q 6:

$$
\sqrt{x^{2}+4 x-5}
$$

Answer:

$$
\text { Let } I=\int \sqrt{x^{2}+4 x-5} d x
$$

$$
\begin{aligned}
& =\int \sqrt{\left(x^{2}+4 x+4\right)-9} d x \\
& =\int \sqrt{(x+2)^{2}-(3)^{2}} d x
\end{aligned}
$$

It is known that, $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
$\therefore I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x-5}-\frac{9}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x-5}\right|+\mathrm{C}$

$$
\begin{aligned}
& \text { Q 7: } \\
& \quad \cdot \sqrt{1+3 x-x^{2}}
\end{aligned}
$$

Answer:

$$
\text { Let } \begin{aligned}
I & =\int \sqrt{1+3 x-x^{2}} d x \\
& =\int \sqrt{1-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)} d x \\
& =\int \sqrt{\left(1+\frac{9}{4}\right)-\left(x-\frac{3}{2}\right)^{2}} d x \\
& =\int \sqrt{\left(\frac{\sqrt{13}}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}} d x
\end{aligned}
$$

It is known that, $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$

$$
\begin{aligned}
\therefore I & =\frac{x-\frac{3}{2}}{2} \sqrt{1+3 x-x^{2}}+\frac{13}{4 \times 2} \sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}}\right)+\mathrm{C} \\
& =\frac{2 x-3}{4} \sqrt{1+3 x-x^{2}}+\frac{13}{8} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{13}}\right)+\mathrm{C}
\end{aligned}
$$

Q 8:

$\sqrt{x^{2}+3 x}$
Answer:
Let $I=\int \sqrt{x^{2}+3 x} d x$

$$
\begin{aligned}
& =\int \sqrt{x^{2}+3 x+\frac{9}{4}-\frac{9}{4}} d x \\
& =\int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} d x
\end{aligned}
$$

It is known that, $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
$\begin{aligned} \therefore I & =\frac{\left(x+\frac{3}{2}\right)}{2} \sqrt{x^{2}+3 x}-\frac{9}{2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}\right|+\mathrm{C} \\ & =\frac{(2 x+3)}{4} \sqrt{x^{2}+3 x}-\frac{9}{8} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}\right|+\mathrm{C}\end{aligned}$

Q 9:

$\sqrt{1+\frac{x^{2}}{9}}$

Answer:

Let $I=\int \sqrt{1+\frac{x^{2}}{9}} d x=\frac{1}{3} \int \sqrt{9+x^{2}} d x=\frac{1}{3} \int \sqrt{(3)^{2}+x^{2}} d x$

It is known that, $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$

$$
\begin{aligned}
\therefore I & =\frac{1}{3}\left[\frac{x}{2} \sqrt{x^{2}+9}+\frac{9}{2} \log \left|x+\sqrt{x^{2}+9}\right|\right]+\mathrm{C} \\
& =\frac{x}{6} \sqrt{x^{2}+9}+\frac{3}{2} \log \left|x+\sqrt{x^{2}+9}\right|+\mathrm{C}
\end{aligned}
$$

Q 10:

$\int \sqrt{1+x^{2}} d x$ is equal to
A. $\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \log \left|x+\sqrt{1+x^{2}}\right|+\mathrm{C}$
B. $\frac{2}{3}\left(1+x^{2}\right)^{\frac{2}{3}}+\mathrm{C}$
C. $\frac{2}{3} x\left(1+x^{2}\right)^{\frac{3}{2}}+\mathrm{C}$
D. $\frac{x^{2}}{2} \sqrt{1+x^{2}}+\frac{1}{2} x^{2} \log \left|x+\sqrt{1+x^{2}}\right|+\mathrm{C}$

Answer

It is known that, $\int \sqrt{a^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
$\therefore \int \sqrt{1+x^{2}} d x=\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \log \left|x+\sqrt{1+x^{2}}\right|+\mathrm{C}$
Hence, the correct Answer is A.

Q 11:

$\int \sqrt{x^{2}-8 x+7} d x$ is equal to
A. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}+9 \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+\mathrm{C}$
B. $\frac{1}{2}(x+4) \sqrt{x^{2}-8 x+7}+9 \log \left|x+4+\sqrt{x^{2}-8 x+7}\right|+\mathrm{C}$
C. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-3 \sqrt{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+\mathrm{C}$
D. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+\mathrm{C}$

Answer:

$$
\text { Let } \begin{aligned}
I & =\int \sqrt{x^{2}-8 x+7} d x \\
& =\int \sqrt{\left(x^{2}-8 x+16\right)-9} d x \\
& =\int \sqrt{(x-4)^{2}-(3)^{2}} d x
\end{aligned}
$$

It is known that, $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
$\therefore I=\frac{(x-4)}{2} \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|(x-4)+\sqrt{x^{2}-8 x+7}\right|+\mathrm{C}$
Hence, the correct Answer is D.

Exercise 7.8

Q 1:
$\int_{a}^{b} x d x$
Answer:
It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=a, b=b$, and $f(x)=x$

$$
\begin{aligned}
\therefore \int_{a}^{b} x d x & =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[a+(a+h) \ldots(a+2 h) \ldots a+(n-1) h] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[(a+a+a+\ldots+a)+(h+2 h+3 h+\ldots+(n-1) h)] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[n a+h(1+2+3+\ldots+(n-1))] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[n a+h\left\{\frac{(n-1)(n)}{2}\right\}\right] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}\left[n a+\frac{n(n-1) h}{2}\right] \\
& =(b-a) \lim _{n \rightarrow \infty} \frac{n}{n}\left[a+\frac{(n-1) h}{2}\right] \\
& =(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{(n-1) h}{2}\right] \\
& =(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{(n-1)(b-a)}{2 n}\right] \\
& =(b-a) \lim _{n \rightarrow \infty}\left[a+\frac{\left(1-\frac{1}{n}\right)}{2}[(b-a)]\right. \\
& =(b-a)\left[a+\frac{(b-a)}{2}\right] \\
& =(b-a)\left[\frac{2 a+b-a}{2}\right] \\
& =\frac{(b-a)(b+a)}{2} \\
& =\frac{1}{2}\left(b^{2}-a^{2}\right)
\end{aligned}
$$

Q 2:

$$
\int_{0}^{5}(x+1) d x
$$

Answer:
Let $I=\int_{0}^{6}(x+1) d x$
It is known that,
$\int_{o}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h) \ldots f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=0, b=5$, and $f(x)=(x+1)$

$$
\Rightarrow h=\frac{5-0}{n}=\frac{5}{n}
$$

$$
\therefore \int_{0}^{5}(x+1) d x=(5-0) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(0)+f\left(\frac{5}{n}\right)+\ldots+f\left((n-1) \frac{5}{n}\right)\right]
$$

$$
=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(\frac{5}{n}+1\right)+\ldots\left\{1+\left(\frac{5(n-1)}{n}\right)\right\}\right]
$$

$$
=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[(1+\underset{n \text { tines }}{1+1})+\left[\frac{5}{n}+2 \cdot \frac{5}{n}+3 \cdot \frac{5}{n}+\ldots(n-1) \frac{5}{n}\right]\right]
$$

$$
=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5}{n}\{1+2+3 \ldots(n-1)\}\right]
$$

$$
=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5}{n} \cdot \frac{(n-1) n}{2}\right]
$$

$$
=5 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{5(n-1)}{2}\right]
$$

$$
=5 \lim _{n \rightarrow \infty}\left[1+\frac{5}{2}\left(1-\frac{1}{n}\right)\right]
$$

$$
=5\left[1+\frac{5}{2}\right]
$$

$$
=5\left[\frac{7}{2}\right]
$$

$$
=\frac{35}{2}
$$

Q 3:
$\int_{2}^{3} x^{2} d x$

Answer:

It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+f(a+2 h) \ldots f\{a+(n-1) h\}]$, where $h=\frac{b-a}{n}$
Here, $a=2, b=3$, and $f(x)=x^{2}$
$\Rightarrow h=\frac{3-2}{n}=\frac{1}{n}$
$\therefore \int_{2}^{3} x^{2} d x=(3-2) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(2)+f\left(2+\frac{1}{n}\right)+f\left(2+\frac{2}{n}\right) \ldots f\left\{2+(n-1) \frac{1}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[(2)^{2}+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots\left(2+\frac{(n-1)}{n}\right)^{2}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[2^{2}+\left\{2^{2}+\left(\frac{1}{n}\right)^{2}+2 \cdot 2 \cdot \frac{1}{n}\right\}+\ldots+\left\{(2)^{2}+\frac{(n-1)^{2}}{n^{2}}+2 \cdot 2 \cdot \frac{(n-1)}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(2^{2}+\ldots+2^{2}\right)+\left\{\left(\frac{1}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}+\ldots+\left(\frac{n-1}{n}\right)^{2}\right\}+2 \cdot 2 \cdot\left\{\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots+\frac{(n-1)}{n}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{1}{n^{2}}\left\{1^{2}+2^{2}+3^{2} \ldots+(n-1)^{2}\right\}+\frac{4}{n}\{1+2+\ldots+(n-1)\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{1}{n^{2}}\left\{\frac{n(n-1)(2 n-1)}{6}\right\}+\frac{4}{n}\left\{\frac{n(n-1)}{2}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[4 n+\frac{n\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)}{6}+\frac{4 n-4}{2}\right]$
$=\lim _{n \rightarrow \infty}\left[4+\frac{1}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+2-\frac{2}{n}\right]$
$=4+\frac{2}{6}+2$
$=\frac{19}{3}$

Q 4:

$$
\int^{4}\left(x^{2}-x\right) d x
$$

Answer:

Let $I=\int_{1}^{4}\left(x^{2}-x\right) d x$

$$
\begin{equation*}
=\int_{1}^{4} x^{2} d x-\int_{1}^{4} x d x \tag{1}
\end{equation*}
$$

Let $I=I_{1}-I_{2}$, where $I_{1}=\int^{4} x^{2} d x$ and $I_{2}=\int^{4} x d x$
It is known that,

$$
\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+f(a+(n-1) h)], \text { where } h=\frac{b-a}{n}
$$

For $I_{1}=\int_{1}^{4} x^{2} d x$,
$a=1, b=4$, and $f(x)=x^{2}$
$\therefore h=\frac{4-1}{n}=\frac{3}{n}$
$I_{1}=\int_{1}^{4} x^{2} d x=(4-1) \lim _{n \rightarrow \infty} \frac{1}{n}[f(1)+f(1+h)+\ldots+f(1+(n-1) h)]$
$=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1^{2}+\left(1+\frac{3}{n}\right)^{2}+\left(1+2 \cdot \frac{3}{n}\right)^{2}+\ldots\left(1+\frac{(n-1) 3}{n}\right)^{2}\right]$
$=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1^{2}+\left\{1^{2}+\left(\frac{3}{n}\right)^{2}+2 \cdot \frac{3}{n}\right\}+\ldots+\left\{1^{2}+\left(\frac{(n-1) 3}{n}\right)^{2}+\frac{2 \cdot(n-1) \cdot 3}{n}\right\}\right]$
$=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(1^{2}+\ldots+1^{2}\right)+\left(\frac{3}{n}\right)^{2}\left\{1^{2}+2^{2}+\ldots+(n-1)^{2}\right\}+2 \cdot \frac{3}{n}\{1+2+\ldots+(n-1)\}\right]$

$$
\begin{align*}
&=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{9}{n^{2}}\left\{\frac{(n-1)(n)(2 n-1)}{6}\right\}+\frac{6}{n}\left\{\frac{(n-1)(n)}{2}\right\}\right] \\
&=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{9 n}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+\frac{6 n-6}{2}\right] \\
&=3 \lim _{n \rightarrow \infty}\left[1+\frac{9}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)+3-\frac{3}{n}\right] \\
&=3[1+3+3] \\
&=3[7] \\
& I_{1}=21 \tag{2}
\end{align*}
$$

$$
\text { For } I_{2}=\int_{1}^{4} x d x \text {, }
$$

$$
a=1, b=4, \text { and } f(x)=x
$$

$$
\Rightarrow h=\frac{4-1}{n}=\frac{3}{n}
$$

$$
\therefore I_{2}=(4-1) \lim _{n \rightarrow \infty} \frac{1}{n}[f(1)+f(1+h)+\ldots f(a+(n-1) h)]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}[1+(1+h)+\ldots+(1+(n-1) h)]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(1+\frac{3}{n}\right)+\ldots+\left\{1+(n-1) \frac{3}{n}\right\}\right]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(1+{ }_{n}+\ldots+1\right)+\frac{3}{n}(1+2+\ldots+(n-1))\right]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{3}{n}\left\{\frac{(n-1) n}{2}\right\}\right]
$$

$$
=3 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\frac{3}{2}\left(1-\frac{1}{n}\right)\right]
$$

$$
=3\left[1+\frac{3}{2}\right]
$$

$$
=3\left[\frac{5}{2}\right]
$$

$$
\begin{equation*}
I_{2}=\frac{15}{2} \tag{3}
\end{equation*}
$$

From equations (2) and (3), we obtain
$I=I_{1}+I_{2}=21-\frac{15}{2}=\frac{27}{2}$

Q 5:
$\int_{-1}^{1} e^{x} d x$
Answer:
Let $I=\int_{-1}^{1} e^{x} d x$
It is known that,
$\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h) \ldots f(a+(n-1) h)]$, where $h=\frac{b-a}{n}$
Here, $a=-1, b=1$, and $f(x)=e^{x}$

$$
\therefore h=\frac{1+1}{n}=\frac{2}{n}
$$

$$
\therefore I=(1+1) \lim _{n \rightarrow \infty} \frac{1}{n}\left[f(-1)+f\left(-1+\frac{2}{n}\right)+f\left(-1+2 \cdot \frac{2}{n}\right)+\ldots+f\left(-1+\frac{(n-1) 2}{n}\right)\right]
$$

$$
=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{-1}+e^{\left(-1+\frac{2}{n}\right)}+e^{\left(-1+2 \frac{2}{n}\right)}+\ldots e^{\left(-1+(n-1)^{2} \frac{2}{n}\right)}\right]
$$

$$
=2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{-1}\left\{1+e^{\frac{2}{n}}+e^{\frac{4}{n}}+e^{\frac{6}{n}}+e^{(n-1)^{2}} \frac{2}{n}\right\}\right]
$$

$$
=2 \lim _{n \rightarrow \infty} \frac{e^{-1}}{n}\left[\frac{e^{\frac{2 n}{n}-1}}{e^{\frac{2}{n}}}\right]
$$

$$
=e^{-1} \times 2 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{e^{2}-1}{e^{\frac{2}{n}-1}}\right]
$$

$$
=\frac{e^{-1} \times 2\left(e^{2}-1\right)}{\lim _{\frac{2}{n} \rightarrow 0}\left(\frac{e^{\frac{2}{n}}-1}{\frac{2}{n}}\right) \times 2}
$$

$$
=e^{-1}\left[\frac{2\left(e^{2}-1\right)}{2}\right]
$$

$$
\left[\lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right)=1\right]
$$

$=\frac{e^{2}-1}{e}$
$=\left(e-\frac{1}{e}\right)$

Q 6:

$$
\int_{0}^{4}\left(x+e^{2 x}\right) d x
$$

Answer:

It is known that,

$$
\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)], \text { where } h=\frac{b-a}{n}
$$

Here, $a=0, b=4$, and $f(x)=x+e^{2 x}$

$$
\therefore h=\frac{4-0}{n}=\frac{4}{n}
$$

$$
\Rightarrow \int_{0}^{4}\left(x+e^{2 x}\right) d x=(4-0) \lim _{n \rightarrow \infty} \frac{1}{n}[f(0)+f(h)+f(2 h)+\ldots+f((n-1) h)]
$$

$$
=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(0+e^{0}\right)+\left(h+e^{2 h}\right)+\left(2 h+e^{22 h}\right)+\ldots+\left\{(n-1) h+e^{2(n-1) h}\right\}\right]
$$

$$
=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\left(h+e^{2 h}\right)+\left(2 h+e^{4 h}\right)+\ldots+\left\{(n-1) h+e^{2(n-1) h}\right\}\right]
$$

$$
=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\{h+2 h+3 h+\ldots+(n-1) h\}+\left(1+e^{2 h}+e^{4 h}+\ldots+e^{2(n-1) h}\right)\right]
$$

$$
=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[h\{1+2+\ldots(n-1)\}+\left(\frac{e^{2 h n}-1}{e^{2 h}-1}\right)\right]
$$

$$
=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{(h(n-1) n)}{2}+\left(\frac{e^{2 h n}-1}{e^{2 h}-1}\right)\right]
$$

$$
=4 \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{4}{n} \cdot \frac{(n-1) n}{2}+\left(\frac{e^{8}-1}{e^{\frac{8}{n}}-1}\right)\right]
$$

$$
=4(2)+4 \lim _{n \rightarrow \infty} \frac{\left(e^{8}-1\right)}{\left(\frac{e^{\frac{8}{n}}-1}{\frac{8}{n}}\right) 8}
$$

$$
=8+\frac{4 \cdot\left(e^{8}-1\right)}{8}
$$

$$
\left(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right)
$$

$$
=8+\frac{e^{8}-1}{2}
$$

$$
=\frac{15+e^{8}}{2}
$$

Exercise 7.9

Q 1:

$$
\int_{-1}^{1}(x+1) d x
$$

Answer:

$$
\text { Let } I=\int_{-1}^{1}(x+1) d x
$$

$$
\int(x+1) d x=\frac{x^{2}}{2}+x=\mathrm{F}(x)
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(-1) \\
& =\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right) \\
& =\frac{1}{2}+1-\frac{1}{2}+1 \\
& =2
\end{aligned}
$$

Q 2:

$$
\int_{2}^{3} \frac{1}{x} d x
$$

Answer:

$$
\begin{aligned}
& \text { Let } I=\int_{2}^{3} \frac{1}{x} d x \\
& \int \frac{1}{x} d x=\log |x|=\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(3)-\mathrm{F}(2) \\
& =\log |3|-\log |2|=\log \frac{3}{2}
\end{aligned}
$$

Q 3:

$\int^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$
Answer:
Let $I=\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$

$$
\begin{aligned}
\int\left(4 x^{3}-5 x^{2}+6 x+9\right) d x & =4\left(\frac{x^{4}}{4}\right)-5\left(\frac{x^{3}}{3}\right)+6\left(\frac{x^{2}}{2}\right)+9(x) \\
& =x^{4}-\frac{5 x^{3}}{3}+3 x^{2}+9 x=\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(2)-\mathrm{F}(1) \\
I & =\left\{2^{4}-\frac{5 \cdot(2)^{3}}{3}+3(2)^{2}+9(2)\right\}-\left\{(1)^{4}-\frac{5(1)^{3}}{3}+3(1)^{2}+9(1)\right\} \\
& =\left(16-\frac{40}{3}+12+18\right)-\left(1-\frac{5}{3}+3+9\right) \\
& =16-\frac{40}{3}+12+18-1+\frac{5}{3}-3-9 \\
& =33-\frac{35}{3} \\
& =\frac{99-35}{3} \\
& =\frac{64}{3}
\end{aligned}
$$

Q 4:

$\int_{0}^{\frac{\pi}{4}} \sin 2 x d x$
Answer:
Let $I=\int_{0}^{\pi} \sin 2 x d x$
$\int \sin 2 x d x=\left(\frac{-\cos 2 x}{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}(0) \\
& =-\frac{1 \pi}{2}\left[\cos 2\left(\frac{-}{4}\right)-\cos 0\right] \\
& =-\frac{1 \pi}{2}\left[\cos \left(\frac{-}{2}\right)-\cos 0\right] \\
& =-\frac{1}{2}[0-1] \\
& =\frac{1}{2}
\end{aligned}
$$

Q 5:
 $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$

Answer:
Let $I=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
$\int \cos 2 x d x=\left(\frac{\sin 2 x}{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{2}\right)-\mathrm{F}(0) \\
& =\frac{1}{2}\left[\sin 2\left(\frac{\pi}{2}\right)-\sin 0\right] \\
& =\frac{1}{2}[\sin \pi-\sin 0] \\
& =\frac{1}{2}[0-0]=0
\end{aligned}
$$

Q 6:

$$
\int_{4}^{5} e^{x} d x
$$

Answer:
Let $I=\int_{4}^{5} e^{x} d x$
$\int e^{x} d x=e^{x}=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(5)-\mathrm{F}(4) \\
& =e^{5}-e^{4} \\
& =e^{4}(e-1)
\end{aligned}
$$

Q 7:

$$
\int_{0}^{\frac{\pi}{4}} \tan x d x
$$

Answer:

$$
\begin{aligned}
& \text { Let } I=\int_{0}^{\pi} \tan x d x \\
& \int \tan x d x=-\log |\cos x|=\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}(0) \\
& =-\log \left|\cos \frac{\pi}{4}\right|+\log |\cos 0| \\
& =-\log \left|\frac{1}{\sqrt{2}}\right|+\log |1| \\
& =-\log (2)^{-\frac{1}{2}} \\
& =\frac{1}{2} \log 2
\end{aligned}
$$

Q 8:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x
$$

Answer:
Let $I=\int_{\frac{2}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x$
$\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}\left(\frac{\pi}{6}\right) \\
& =\log \left|\operatorname{cosec} \frac{\pi}{4}-\cot \frac{\pi}{4}\right|-\log \left|\operatorname{cosec} \frac{\pi}{6}-\cot \frac{\pi}{6}\right| \\
& =\log |\sqrt{2}-1|-\log |2-\sqrt{3}| \\
& =\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)
\end{aligned}
$$

Q 9:

$\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
Answer:
Let $I=\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x=\mathrm{F}(x)
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\sin ^{-1}(1)-\sin ^{-1}(0) \\
& =\frac{\pi}{2}-0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

Q 10:
$\int_{0}^{1} \frac{d x}{1+x^{2}}$

Answer
Let $I=\int_{0}^{1} \frac{d x}{1+x^{2}}$
$\int \frac{d x}{1+x^{2}}=\tan ^{-1} x=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\tan ^{-1}(1)-\tan ^{-1}(0) \\
& =\frac{\pi}{4}
\end{aligned}
$$

Q 11:
$\int_{2}^{3} \frac{d x}{x^{2}-1}$
Answer:
Let $I=\int_{2}^{3} \frac{d x}{x^{2}-1}$
$\int \frac{d x}{x^{2}-1}=\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(3)-\mathrm{F}(2) \\
& =\frac{1}{2}\left[\log \left|\frac{3-1}{3+1}\right|-\log \left|\frac{2-1}{2+1}\right|\right] \\
& =\frac{1}{2}\left[\log \left|\frac{2}{4}\right|-\log \left|\frac{1}{3}\right|\right] \\
& =\frac{1}{2}\left[\log \frac{1}{2}-\log \frac{1}{3}\right] \\
& =\frac{1}{2}\left[\log \frac{3}{2}\right]
\end{aligned}
$$

Q 12:
$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
Answer:
Let $I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
$\int \cos ^{2} x d x=\int\left(\frac{1+\cos 2 x}{2}\right) d x=\frac{x}{2}+\frac{\sin 2 x}{4}=\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\left[\mathrm{F}\left(\frac{\pi}{2}\right)-\mathrm{F}(0)\right] \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}-\frac{\sin \pi}{2}\right)-\left(0+\frac{\sin 0}{2}\right)\right] \\
& =\frac{1}{2}\left[\frac{\pi}{2}+0-0-0\right] \\
& =\frac{\pi}{4}
\end{aligned}
$$

Q 13:

$\int_{2}^{3} \frac{x d x}{x^{2}+1}$
Answer:
Let $I=\int_{2}^{3} \frac{x}{x^{2}+1} d x$
$\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x=\frac{1}{2} \log \left(1+x^{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(3)-\mathrm{F}(2) \\
& =\frac{1}{2}\left[\log \left(1+(3)^{2}\right)-\log \left(1+(2)^{2}\right)\right] \\
& =\frac{1}{2}[\log (10)-\log (5)] \\
& =\frac{1}{2} \log \left(\frac{10}{5}\right)=\frac{1}{2} \log 2
\end{aligned}
$$

Q 14:
$\int_{0} \frac{2 x+3}{5 x^{2}+1} d x$
Answer:
Let $I=\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x$
$\int \frac{2 x+3}{5 x^{2}+1} d x=\frac{1}{5} \int \frac{5(2 x+3)}{5 x^{2}+1} d x$
$=\frac{1}{5} \int \frac{10 x+15}{5 x^{2}+1} d x$
$=\frac{1}{5} \int \frac{10 x}{5 x^{2}+1} d x+3 \int \frac{1}{5 x^{2}+1} d x$
$=\frac{1}{5} \int \frac{10 x}{5 x^{2}+1} d x+3 \int \frac{1}{5\left(x^{2}+\frac{1}{5}\right)} d x$
$=\frac{1}{5} \log \left(5 x^{2}+1\right)+\frac{3}{5} \cdot \frac{1}{\frac{1}{\sqrt{5}}} \tan ^{-1} \frac{x}{\frac{1}{\sqrt{5}}}$
$=\frac{1}{5} \log \left(5 x^{2}+1\right)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5} x)$
$=F(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\left\{\frac{1}{5} \log (5+1)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5})\right\}-\left\{\frac{1}{5} \log (1)+\frac{3}{\sqrt{5}} \tan ^{-1}(0)\right\} \\
& =\frac{1}{5} \log 6+\frac{3}{\sqrt{5}} \tan ^{-1} \sqrt{5}
\end{aligned}
$$

Q 15:

$$
\int_{0}^{1} x e^{x^{2}} d x
$$

Answer:
Let $I=\int_{0}^{1} x e^{x^{2}} d x$
Put $x^{2}=t \Rightarrow 2 x d x=d t$
As $x \rightarrow 0, t \rightarrow 0$ and as $x \rightarrow 1, t \rightarrow 1$,
$\therefore I=\frac{1}{2} \int_{0}^{1} e^{t} d t$
$\frac{1}{2} \int e^{t} d t=\frac{1}{2} e^{t}=\mathrm{F}(t)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\frac{1}{2} e-\frac{1}{2} e^{0} \\
& =\frac{1}{2}(e-1)
\end{aligned}
$$

Q 16:

$$
\int_{0}^{1} \frac{5 x^{2}}{x^{2}+4 x+3}
$$

Answer:
Let $I=\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} d x$
Dividing $5 x^{2}$ by $x^{2}+4 x+3$, we obtain

$$
\begin{align*}
I & =\int_{1}^{2}\left\{5-\frac{20 x+15}{x^{2}+4 x+3}\right\} d x \\
& =\int_{1}^{2} 5 d x-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x \\
& =[5 x]_{1}^{2}-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x \\
I & =5-I_{1}, \text { where } I=\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x \tag{1}
\end{align*}
$$

Consider $I_{1}=\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+8} d x$
Let $20 x+15=\mathrm{A} \frac{d}{d x}\left(x^{2}+4 x+3\right)+\mathrm{B}$

$$
=2 \mathrm{~A} x+(4 \mathrm{~A}+\mathrm{B})
$$

Equating the coefficients of x and constant term, we obtain
$A=10$ and $B=-25$

$$
\Rightarrow I_{1}=10 \int_{1}^{2} \frac{2 x+4}{x^{2}+4 x+3} d x-25 \int_{1}^{2} \frac{d x}{x^{2}+4 x+3}
$$

Let $x^{2}+4 x+3=t$
$\Rightarrow(2 x+4) d x=d t$
$\Rightarrow I_{1}=10 \int \frac{d t}{t}-25 \int \frac{d x}{(x+2)^{2}-1^{2}}$
$=10 \log t-25\left[\frac{1}{2} \log \left(\frac{x+2-1}{x+2+1}\right)\right]$
$=\left[10 \log \left(x^{2}+4 x+3\right)\right]_{1}^{2}-25\left[\frac{1}{2} \log \left(\frac{x+1}{x+3}\right)\right]_{1}^{2}$
$=[10 \log 15-10 \log 8]-25\left[\frac{1}{2} \log \frac{3}{5}-\frac{1}{2} \log \frac{2}{4}\right]$
$=[10 \log (5 \times 3)-10 \log (4 \times 2)]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]$
$=[10 \log 5+10 \log 3-10 \log 4-10 \log 2]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]$
$=\left[10+\frac{25}{2}\right] \log 5+\left[-10-\frac{25}{2}\right] \log 4+\left[10-\frac{25}{2}\right] \log 3+\left[-10+\frac{25}{2}\right] \log 2$
$=\frac{45}{2} \log 5-\frac{45}{2} \log 4-\frac{5}{2} \log 3+\frac{5}{2} \log 2$
$=\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}$
Substituting the value of I_{1} in (1), we obtain

$$
\begin{aligned}
I & =5-\left[\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}\right] \\
& =5-\frac{5}{2}\left[9 \log \frac{5}{4}-\log \frac{3}{2}\right]
\end{aligned}
$$

Q 17:

$\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$
Answer:
Let $I=\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$
$\int\left(2 \sec ^{2} x+x^{3}+2\right) d x=2 \tan x+\frac{x^{4}}{4}+2 x=\mathrm{F}(x)$
By second fundamenta theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}(0) \\
& =\left\{\left(2 \tan \frac{\pi}{4}+\frac{1}{4}\left(\frac{\pi}{4}\right)^{4}+2\left(\frac{\pi}{4}\right)\right)-(2 \tan 0+0+0)\right\} \\
& =2 \tan \frac{\pi}{4}+\frac{\pi^{4}}{4^{5}}+\frac{\pi}{2} \\
& =2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}
\end{aligned}
$$

Q 18:

$$
\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x
$$

Answer:

$$
\begin{aligned}
\text { Let } \begin{aligned}
I & =\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x \\
& =-\int_{0}^{\pi}\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right) d x \\
& =-\int_{0}^{\pi} \cos x d x \\
\int \cos x d x & =\sin x=\mathrm{F}(x)
\end{aligned}
\end{aligned}
$$

By second fundamental theorem of calculus, we obtan

$$
\begin{aligned}
I & =\mathrm{F}(\pi)-\mathrm{F}(0) \\
& =\sin \pi-\sin 0 \\
& =0
\end{aligned}
$$

Q 19:
$\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$
Answer
Let $I=\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$

$$
\begin{aligned}
\int \frac{6 x+3}{x^{2}+4} d x & =3 \int \frac{2 x+1}{x^{2}+4} d x \\
& =3 \int \frac{2 x}{x^{2}+4} d x+3 \int \frac{1}{x^{2}+4} d x \\
& =3 \log \left(x^{2}+4\right)+\frac{3}{2} \tan ^{-1} \frac{x}{2}=\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(2)-\mathrm{F}(0) \\
& =\left\{3 \log \left(2^{2}+4\right)+\frac{3}{2} \tan ^{-1}\left(\frac{2}{2}\right)\right\}-\left\{3 \log (0+4)+\frac{3}{2} \tan ^{-1}\left(\frac{0}{2}\right)\right\} \\
& =3 \log 8+\frac{3}{2} \tan ^{-1} 1-3 \log 4-\frac{3}{2} \tan ^{-1} 0 \\
& =3 \log 8+\frac{3}{2}\left(\frac{\pi}{4}\right)-3 \log 4-0 \\
& =3 \log \left(\frac{8}{4}\right)+\frac{3 \pi}{8} \\
& =3 \log 2+\frac{3 \pi}{8}
\end{aligned}
$$

Q 20:

$$
\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x
$$

Answer:
Let $I=\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$

$$
\begin{aligned}
\int\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x & =x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^{x} d x\right\} d x+\left\{\frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}}\right\} \\
& =x e^{x}-\int e^{x} d x-\frac{4 \pi}{\pi} \cos \frac{x}{4} \\
& =x e^{x}-e^{x}-\frac{4 \pi}{\pi} \cos \frac{x}{4} \\
& =\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\left(1 \cdot e^{1}-e^{1}-\frac{4}{\pi} \cos \frac{\pi}{4}\right)-\left(0 . e^{0}-e^{0}-\frac{4}{\pi} \cos 0\right) \\
& =e-e-\frac{4}{\pi}\left(\frac{1}{\sqrt{2}}\right)+1+\frac{4}{\pi} \\
& =1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}
\end{aligned}
$$

Q 21:

$\int^{\sqrt{3}} \frac{d x}{1+x^{2}}$ equals
A. ${ }^{\frac{\pi}{3}}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{12}$

Answer:

$$
\int \frac{d x}{1+x^{2}}=\tan ^{-1} x=\mathrm{F}(x)
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
\int^{\sqrt{3}} \frac{d x}{1+x^{2}} & =\mathrm{F}(\sqrt{3})-\mathrm{F}(1) \\
& =\tan ^{-1} \sqrt{3}-\tan ^{-1} 1 \\
& =\frac{\pi}{3}-\frac{\pi}{4} \\
& =\frac{\pi}{12}
\end{aligned}
$$

Hence, the correct Answer is D.

Q 22:
$\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}$ equals
A. $\frac{\pi}{6}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{24}$
D. $\frac{\pi}{4}$

Answer:

$$
\int \frac{d x}{4+9 x^{2}}=\int \frac{d x}{(2)^{2}+(3 x)^{2}}
$$

Put $3 x=t \Rightarrow 3 d x=d t$

$$
\begin{aligned}
\therefore \int \frac{d x}{(2)^{2}+(3 x)^{2}} & =\frac{1}{3} \int \frac{d t}{(2)^{2}+t^{2}} \\
& =\frac{1}{3}\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right] \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{2}\right) \\
& =\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
\int_{0}^{2} \frac{d x}{4+9 x^{2}} & =\mathrm{F}\left(\frac{2}{3}\right)-\mathrm{F}(0) \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3}{2} \cdot \frac{2}{3}\right)-\frac{1}{6} \tan ^{-1} 0 \\
& =\frac{1}{6} \tan ^{-1} 1-0 \\
& =\frac{1}{6} \times \frac{\pi}{4} \\
& =\frac{\pi}{24}
\end{aligned}
$$

Hence, the correct Ans wer s C.

Exercise 7.10

Q 1:
$\int_{0}^{1} \frac{x}{x^{2}+1} d x$
Answer:

$$
\int_{0}^{1} \frac{x}{x^{2}+1} d x
$$

$$
\text { Let } x^{2}+1=t \Rightarrow 2 x d x=d t
$$

$$
\text { When } x=0, t=1 \text { and when } x=1, t=2
$$

$$
\therefore \int_{0}^{1} \frac{x}{x^{2}+1} d x=\frac{1}{2} \int^{2} \frac{d t}{t}
$$

$$
=\frac{1}{2}[\log |t|]_{1}^{2}
$$

$$
=\frac{1}{2}[\log 2-\log 1]
$$

$$
=\frac{1}{2} \log 2
$$

Q 2:

$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi$
Answer:
Let $I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{4} \phi \cos \phi d \phi$
Also, let $\sin \phi=t \Rightarrow \cos \phi d \phi=d t$

When $\phi=0, t=0$ and when $\phi=\frac{\pi}{2}, t=1$

$$
\begin{aligned}
\therefore I & =\int_{0}^{1} \sqrt{t}\left(1-t^{2}\right)^{2} d t \\
& =\int_{0}^{1} t^{\frac{1}{2}}\left(1+t^{4}-2 t^{2}\right) d t \\
& =\int_{0}^{[}\left[t^{\frac{1}{2}}+t^{\frac{9}{2}}-2 t^{\frac{5}{2}}\right] d t \\
& =\left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{11}{2}}}{\frac{11}{2}}-\frac{2 t^{\frac{7}{2}}}{\frac{7}{2}}\right]_{0}^{1} \\
& =\frac{2}{3}+\frac{2}{11}-\frac{4}{7} \\
& =\frac{154+42-132}{231} \\
& =\frac{64}{231}
\end{aligned}
$$

Q 3:
$\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$
Answer:
Let $I=\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$
Also, let $x=\tan \theta \square d x=\sec ^{2} \theta \mathrm{~d} \theta$
When $x=0, \theta=0$ and when $x=1, \quad \theta=\frac{\pi}{4}$

$$
\begin{aligned}
I & =\int_{0}^{\pi} \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \sec ^{2} \theta d \theta \\
& =\int_{0}^{\pi} \sin ^{-1}(\sin 2 \theta) \sec ^{2} \theta d \theta \\
& =\int_{0}^{\pi} 2 \theta \cdot \sec ^{2} \theta d \theta \\
& =2 \int_{0}^{\pi} \theta \cdot \sec ^{2} \theta d \theta
\end{aligned}
$$

Taking θ as first function and $\sec ^{2} \theta$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =2\left[\theta \int \sec ^{2} \theta d \theta-\int\left\{\left(\frac{d}{d x} \theta\right) \int \sec ^{2} \theta d \theta\right\} d \theta\right]_{0}^{\frac{\pi}{4}} \\
& =2\left[\theta \tan \theta-\int \tan \theta d \theta\right]_{0}^{\frac{\pi}{4}} \\
& =2[\theta \tan \theta+\log |\cos \theta|]_{0}^{\frac{\pi}{4}} \\
& =2\left[\frac{\pi}{4} \tan \frac{\pi}{4}+\log \left|\cos \frac{\pi}{4}\right|-\log |\cos 0|\right] \\
& =2\left[\frac{\pi}{4}+\log \left(\frac{1}{\sqrt{2}}\right)-\log 1\right] \\
& =2\left[\frac{\pi}{4}-\frac{1}{2} \log 2\right] \\
& =\frac{\pi}{2}-\log 2
\end{aligned}
$$

Q 4:

$\int_{0}^{2} x \sqrt{x+2}$ (Put $\left.x+2=t^{2}\right)$
Answer:

$$
\begin{aligned}
& \int_{0}^{2} x \sqrt{x+2} d x \\
& \text { Let } x+2=t^{2} \square d x=2 t d t \\
& \text { When } x=0, t=\sqrt{2} \text { and when } x=2, t=2
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int_{0}^{2} x \sqrt{x+2} d x & =\int_{\sqrt{2}}^{2}\left(t^{2}-2\right) \sqrt{t^{2}} 2 t d t \\
& =2 \int_{\sqrt{2}}^{2}\left(t^{2}-2\right) t^{2} d t \\
& =2 \int_{\sqrt{2}}^{2}\left(t^{4}-2 t^{2}\right) d t \\
& =2\left[\frac{t^{5}}{5}-\frac{2 t^{3}}{3}\right]_{\sqrt{2}}^{2} \\
& =2\left[\frac{32}{5}-\frac{16}{3}-\frac{4 \sqrt{2}}{5}+\frac{4 \sqrt{2}}{3}\right] \\
& =2\left[\frac{96-80-12 \sqrt{2}+20 \sqrt{2}}{15}\right] \\
& =2\left[\frac{16+8 \sqrt{2}}{15}\right] \\
& =\frac{16(2+\sqrt{2})}{15} \\
& =\frac{16 \sqrt{2}(\sqrt{2}+1)}{15}
\end{aligned}
$$

Q 5:
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$
Answer:
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$
Let $\cos x=t \square-\sin x d x=d t$
When $x=0, t=1$ and when $\quad x=\frac{\pi}{2}, t=0$

$$
\begin{aligned}
\Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x & =-\int_{1}^{0} \frac{d t}{1+t^{2}} \\
& =-\left[\tan ^{-1} t\right]_{1}^{0} \\
& =-\left[\tan ^{-1} 0-\tan ^{-1} 1\right] \\
& =-\left[-\frac{\pi}{4}\right] \\
& =\frac{\pi}{4}
\end{aligned}
$$

Q 6:
$\int_{0}^{2} \frac{d x}{x+4-x^{2}}$
Answer:

$$
\begin{aligned}
\int_{0}^{2} \frac{d x}{x+4-x^{2}} & =\int_{0}^{2} \frac{d x}{-\left(x^{2}-x-4\right)} \\
& =\int_{0}^{2} \frac{d x}{-\left(x^{2}-x+\frac{1}{4}-\frac{1}{4}-4\right)} \\
& =\int_{0}^{2} \frac{d x}{-\left[\left(x-\frac{1}{2}\right)^{2}-\frac{17}{4}\right]} \\
& =\int_{0}^{2} \frac{d x}{\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}
\end{aligned}
$$

Let $x-\frac{1}{2}=t d x=d t$

When $x=0, t=-\frac{1}{2}$ and when $x=2, t=\frac{3}{2}$

$$
\therefore \int_{0}^{2} \frac{d x}{\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}=\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{d t}{\left(\frac{\sqrt{17}}{2}\right)^{2}-t^{2}}
$$

$$
=\left[\frac{1}{2\left(\frac{\sqrt{17}}{2}\right)} \log \frac{\frac{\sqrt{17}}{2}+t}{\frac{\sqrt{17}}{2}-t}\right]_{-\frac{1}{2}}^{\frac{3}{2}}
$$

$$
=\frac{1}{\sqrt{17}}\left[\log \frac{\frac{\sqrt{17}}{2}+\frac{3}{2}}{\frac{\sqrt{17}}{2}-\frac{3}{2}}-\frac{\log \frac{\sqrt{17}}{2}-\frac{1}{2}}{\log \frac{\sqrt{17}}{2}+\frac{1}{2}}\right]
$$

$$
=\frac{1}{\sqrt{17}}\left[\log \frac{\sqrt{17}+3}{\sqrt{17}-3}-\log \frac{\sqrt{17}-1}{\sqrt{17}+1}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \frac{\sqrt{17}+3}{\sqrt{17}-3} \times \frac{\sqrt{17}+1}{\sqrt{17}-1}
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{17+3+4 \sqrt{17}}{17+3-4 \sqrt{17}}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{20+4 \sqrt{17}}{20-4 \sqrt{17}}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left(\frac{5+\sqrt{17}}{5-\sqrt{17}}\right)
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{(5+\sqrt{17})(5+\sqrt{17})}{25-17}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{25+17+10 \sqrt{17}}{8}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left(\frac{42+10 \sqrt{17}}{8}\right)
$$

$$
=\frac{1}{\sqrt{17}} \log \left(\frac{21+5 \sqrt{17}}{4}\right)
$$

Q 7:
$\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}$
Answer:

$$
\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}=\int_{-1}^{1} \frac{d x}{\left(x^{2}+2 x+1\right)+4}=\int_{-1}^{1} \frac{d x}{(x+1)^{2}+(2)^{2}}
$$

Let $x+1=t \square d x=d t$
When $x=-1, t=0$ and when $x=1, t=2$
$\therefore \int_{-1}^{1} \frac{d x}{(x+1)^{2}+(2)^{2}}=\int_{0}^{2} \frac{d t}{t^{2}+2^{2}}$

$$
\begin{aligned}
& =\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right]_{0}^{2} \\
& =\frac{1}{2} \tan ^{-1} 1-\frac{1}{2} \tan ^{-1} 0 \\
& =\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{8}
\end{aligned}
$$

Q 8:

$\int^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$
Answer:
$\int^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$
Let $2 x=t \square 2 d x=d t$
When $x=1, t=2$ and when $x=2, t=4$

$$
\begin{aligned}
\therefore \int^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x & =\frac{1}{2} \int_{2}^{4}\left(\frac{2}{t}-\frac{2}{t^{2}}\right) e^{t} d t \\
& =\int_{2}^{t}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) e^{t} d t
\end{aligned}
$$

Let $\frac{1}{t}=f(t)$
Then, $f^{\prime}(t)=-\frac{1}{t^{2}}$

$$
\begin{aligned}
\Rightarrow \int_{2}^{t}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) e^{t} d t & =\int_{2}^{4} e^{t}\left[f(t)+f^{\prime}(t)\right] d t \\
& =\left[e^{t} f(t)\right]_{2}^{4} \\
& =\left[e^{t} \cdot \frac{2}{t}\right]_{2}^{4} \\
& =\left[\frac{e^{t}}{t}\right]_{2}^{4} \\
& =\frac{e^{4}}{4}-\frac{e^{2}}{2} \\
& =\frac{e^{2}\left(e^{2}-2\right)}{4}
\end{aligned}
$$

Q 9:
The value of the integral $\int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x$ is
A. 6
B. 0
C. 3
D. 4

Answer:
Let $I=\int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x$
Also, let $x=\sin \theta \Rightarrow d x=\cos \theta d \theta$
When $x=\frac{1}{3}, \theta=\sin ^{-1}\left(\frac{1}{3}\right)$ and when $x=1, \theta=\frac{\pi}{2}$
$\Rightarrow I=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{\left(\sin \theta-\sin ^{3} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta} \cos \theta d \theta$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}\left(1-\sin ^{2} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta} \cos \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^{4} \theta} \cos \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^{2} \theta \sin ^{2} \theta} \cos \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\cos \theta)^{\frac{5}{3}}}{(\sin \theta)^{\frac{5}{3}}} \operatorname{cosec}^{2} \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}(\cot \theta)^{\frac{5}{3}} \operatorname{cosec}^{2} \theta d \theta
$$

Let $\cot \theta=t \square-\operatorname{cosec} 2 \theta d \theta=d t$

When $\theta=\sin ^{-1}\left(\frac{1}{3}\right), t=2 \sqrt{2}$ and when $\theta=\frac{\pi}{2}, t=0$

$$
\begin{aligned}
\therefore I & =-\int_{2 \sqrt{2}}^{0}(t)^{\frac{5}{3}} d t \\
& =-\left[\frac{3}{8}(t)^{\frac{8}{3}}\right]_{2 \sqrt{2}}^{0} \\
& =-\frac{3}{8}\left[(t)^{\frac{8}{3}}\right]_{2 \sqrt{2}}^{0} \\
& =-\frac{3}{8}\left[-(2 \sqrt{2})^{\frac{8}{3}}\right] \\
& =\frac{3}{8}\left[(\sqrt{8})^{\frac{8}{3}}\right] \\
& =\frac{3}{8}\left[(8)^{\frac{4}{3}}\right] \\
& =\frac{3}{8}[16] \\
& =3 \times 2 \\
& =6
\end{aligned}
$$

Hence, the correct Answer is A

Q 10:
If $f(x)=\int_{0}^{x} t \sin t d t$, then $f^{\prime}(x)$ is
A. $\cos x+x \sin x$
B. $x \sin x$
C. $x \cos x$
D. $\sin x+x \cos x$

Answer:
$f(x)=\int_{0}^{x} t \sin t d t$
Integrating by parts, we obtain

$$
\begin{aligned}
f(x) & =t \int_{0}^{x} \sin t d t-\int_{0}^{x}\left\{\left(\frac{d}{d t} t\right) \int \sin t d t\right\} d t \\
& =[t(-\cos t)]_{0}^{x}-\int_{0}^{x}(-\cos t) d t \\
& =[-t \cos t+\sin t]_{0}^{x} \\
& =-x \cos x+\sin x \\
\Rightarrow f^{\prime}(x) & =-[\{x(-\sin x)\}+\cos x]+\cos x \\
& =x \sin x-\cos x+\cos x \\
& =x \sin x
\end{aligned}
$$

Hence, the correct Answer is B

Exercise 7.11

Q 1:
$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
Answer

$$
\begin{align*}
& I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \tag{1}\\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{\pi}{2}-x\right) d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x \tag{2}
\end{align*}
$$

$\left(\int_{0}^{0} f(x) d x=\int_{0}^{0} f(a-x) d x\right)$

Adding (1) and (2), we obtain

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x+\cos ^{2} x\right) d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x \\
& \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}} \\
& \Rightarrow 2 I=\frac{\pi}{2} \\
& \Rightarrow I=\frac{\pi}{4}
\end{aligned}
$$

Q 2:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x
$$

$$
\text { Answer } \begin{align*}
& \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x} d x} \\
& \\
& \text { Let } I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \tag{1}\\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos }}{\sqrt{\cos }+\sqrt{\sin x}} d x \tag{2}\\
& \text { Adding }(1) \operatorname{and}(2), \text { e obtain } \\
& 2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x \\
& \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}} \\
& \Rightarrow 2 I=\frac{\pi}{2} \\
& \Rightarrow I=\frac{\pi}{4}
\end{align*}
$$

Q 3: $\quad \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}$
Answer: Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$

$$
\begin{align*}
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x \tag{2}
\end{align*}
$$

Adding (1) and (2), we obtain

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x \\
& \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}} \\
& \Rightarrow 2 I=\frac{\pi}{2} \\
& \Rightarrow I=\frac{\pi}{4}
\end{aligned}
$$

Q4: $\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x}$
Answer:

$$
\begin{align*}
& \text { Let } I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x \tag{1}\\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5}\left(\frac{\pi}{2}-x\right)}{\sin ^{5}\left(\frac{\pi}{2}-x\right)+\cos ^{5}\left(\frac{\pi}{2}-x\right)} d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x \tag{2}
\end{align*}
$$

$$
\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)
$$

Adding (1) and (2), we obtan

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x+\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x \\
& \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}} \\
& \Rightarrow 2 I=\frac{\pi}{2} \\
& \Rightarrow I=\frac{\pi}{4}
\end{aligned}
$$

Q 5:

$$
\int_{-5}^{5}|x+2| d x
$$

Answer:
Let $I=\int_{-5}^{5}|x+2| d x$
It can be seen that $(x+2) \leq 0$ on $[-5,-2]$ and $(x+2) \geq 0$ on $[-2,5]$.

$$
\begin{aligned}
\therefore & =\int_{-5}^{-2}-(x+2) d x+\int_{-2}^{5}(x+2) d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{c}^{b} f(x)\right) \\
I & =-\left[\frac{x^{2}}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{5} \\
& =-\left[\frac{(-2)^{2}}{2}+2(-2)-\frac{(-5)^{2}}{2}-2(-5)\right]+\left[\frac{(5)^{2}}{2}+2(5)-\frac{(-2)^{2}}{2}-2(-2)\right] \\
& =-\left[2-4-\frac{25}{2}+10\right]+\left[\frac{25}{2}+10-2+4\right] \\
& =-2+4+\frac{25}{2}-10+\frac{25}{2}+10-2+4 \\
& =29
\end{aligned}
$$

Q 6:

$$
\int_{2}^{6}|x-5| d x
$$

Answer:

Let $I=\int_{2}^{6}|x-5| d x$
It can be seen that $\left(\begin{array}{ll}x & 5\end{array}\right) \leq 0$ on $[2,5]$ and $\left(\begin{array}{ll}x & 5\end{array}\right) \geq 0$ on $[5,8]$.

$$
\begin{aligned}
I & =\int_{2}^{5}-(x-5) d x+\int_{2}^{8}(x-5) d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{c}^{b} f(x)\right) \\
& =-\left[\frac{x^{2}}{2}-5 x\right]_{2}^{5}+\left[\frac{x^{2}}{2}-5 x\right]_{5}^{8} \\
& =-\left[\frac{25}{2}-25-2+10\right]+\left[32-40-\frac{25}{2}+25\right] \\
& =9
\end{aligned}
$$

Q 7:

$$
\int_{0}^{1} x(1-x)^{n} d x
$$

Answer:
Let $I=\int_{0}^{1} x(1-x)^{n} d x$

$$
\begin{array}{rlr}
\therefore I & =\int_{0}^{1}(1-x)(1-(1-x))^{n} d x \\
& =\int_{0}^{1}(1-x)(x)^{n} d x \\
& =\int_{0}^{1}\left(x^{n}-x^{n+1}\right) d x \\
& =\left[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\right]_{0}^{1} \quad\left(\int_{0}^{1} f(x) d x=\int_{0}^{n} f(a-x) d x\right)
\end{array}
$$

Q 8:

$$
\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x
$$

Answer:

$$
\begin{align*}
& \text { Let } I=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x \tag{1}\\
& \therefore I=\int_{0}^{\frac{\pi}{4}} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right\} d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{1-\tan x}{1+\tan }\right\} d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \frac{2}{(1+\tan x)} d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-I \\
& \Rightarrow 2 I=[x \log 2]_{0}^{\frac{\pi}{4}} \\
& \Rightarrow 2 I=\frac{\pi}{4} \log 2 \\
& \Rightarrow I=\frac{\pi}{8} \log 2
\end{align*}
$$

$$
\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)
$$

Q 9:
$\int_{0}^{1} x(1-x)^{n} d x$

Answer:

$$
\begin{aligned}
& \text { Let } I=\int_{0}^{2} x \sqrt{2-x} d x \\
& \begin{aligned}
I & =\int_{0}^{2}(2-x) \sqrt{x} d x \\
& =\int_{0}^{2}\left\{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right\}^{2} d x \\
& =\left[2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{2} \\
& =\left[\frac{4}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}\right]_{0}^{2} \\
& =\frac{4}{3}(2)^{\frac{3}{2}}-\frac{2}{5}(2)^{\frac{5}{2}} \\
& =\frac{4 \times 2 \sqrt{2}}{3}-\frac{2}{5} \times 4 \sqrt{2} \\
& =\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5} \\
& =\frac{40 \sqrt{2}-24 \sqrt{2}}{15} \\
& =\frac{16 \sqrt{2}}{15}
\end{aligned}
\end{aligned}
$$

Q 10:
$\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$
Answer:
Let $I=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log (2 \sin x \cos x)\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log \sin x-\log \cos x-\log 2\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \sin x-\log \cos x-\log 2\} d x$

It is known that, $\left(\int_{0}^{0} f(x) d x=\int_{0}^{0} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \cos x-\log \sin x-\log 2\} d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{\pi}{2}}(-\log 2-\log 2) d x$
$\Rightarrow 2 I=-2 \log 2 \int_{0}^{\frac{\pi}{2}} 1 d x$
$\Rightarrow I=-\log 2\left[\frac{\pi}{2}\right]$
$\Rightarrow I=\frac{\pi}{2}(-\log 2)$
$\Rightarrow I=\frac{\pi}{2}\left[\log \frac{1}{2}\right]$
$\Rightarrow I=\frac{\pi}{2} \log \frac{1}{2}$

Q 11:
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$
Answer:
Let $I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$
As $\sin ^{2}(-x)=(\sin (-x))^{2}=(-\sin x)^{2}=\sin ^{2} x$, therefore, $\sin ^{2} x$ is an even function.

It is known that if $f(x)$ is an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{\pi} f(x) d x$

$$
\begin{aligned}
I & =2 \int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x \\
& =2 \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x \\
& =\int_{0}^{\frac{\pi}{2}}(1-\cos 2 x) d x \\
& =\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Q 12:

$\int_{0}^{\pi} \frac{x d x}{1+\sin x}$
Answer:
Let $I=\int_{0}^{\pi} \frac{x d x}{1+\sin x}$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin (\pi-x)} d x$
$\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin x} d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{\pi} \frac{\pi}{1+\sin x} d x$
$\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{(1-\sin x)}{(1+\sin x)(1-\sin x)} d x$
$\Rightarrow 2 I=\pi \int_{0}^{1-\sin x} \frac{\cos ^{2} x}{\cos ^{2}} d x$
$\Rightarrow 2 I=\pi \int_{0}^{\pi}\left\{\sec ^{2} x-\tan x \sec x\right\} d x$
$\Rightarrow 2 I=\pi[\tan x-\sec x]_{0}^{\pi}$
$\Rightarrow 2 I=\pi[2]$
$\Rightarrow I=\pi$

Q 13:

$$
\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x
$$

Answer:
Let $I=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$
As $\sin ^{7}(-x)=(\sin (-x))^{7}=(-\sin x)^{7}=-\sin ^{7} x$, therefore, $\sin ^{2} x$ is an odd function.
It is known that, if $f(x)$ is an odd function, then $\int_{-}^{a} f(x) d x=0$
$\therefore I=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x=0$

Q 14:

$$
\int_{0}^{2 \pi} \cos ^{5} x d x
$$

Answer:

$$
\begin{equation*}
\text { Let } I=\int_{0}^{2 \pi} \cos ^{5} x d x \tag{1}
\end{equation*}
$$

$\cos ^{5}(2 \pi-x)=\cos ^{5} x$
It is known that,

$$
\begin{aligned}
\int_{0}^{2 a} f(x) d x & =2 \int_{0}^{a} f(x) d x, \text { if } f(2 a-x)=f(x) \\
& =0 \text { if } f(2 a-x)=-f(x)
\end{aligned}
$$

$\therefore I=2 \int_{0}^{\pi} \cos ^{5} x d x$
$\Rightarrow I=2(0)=0$

$$
\left[\cos ^{5}(\pi-x)=-\cos ^{5} x\right]
$$

Q 15:

$\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$
Answer:

$$
\begin{align*}
& \text { Let } I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x \tag{1}\\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin x \cos x} d x
\end{align*}
$$

Adding (1) and (2), we obtain

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}} \frac{0}{1+\sin x \cos x} d x \\
& \Rightarrow I=0
\end{aligned}
$$

Q 16:

$\int_{0}^{\pi} \log (1+\cos x) d x$
Answer:

$$
\begin{align*}
& \text { Let } I=\int_{0}^{\pi} \log (1+\cos x) d x \tag{1}\\
& \Rightarrow I=\int_{0}^{\pi} \log (1+\cos (\pi-x)) d x \\
& \Rightarrow I=\int_{0}^{\pi} \log (1-\cos x) d x \tag{2}
\end{align*}
$$

Adding (1) and (2), we obtain

$$
\begin{align*}
& 2 I=\int_{0}^{\pi}\{\log (1+\cos x)+\log (1-\cos x)\} d x \\
& \Rightarrow 2 I=\int_{0}^{\pi} \log \left(1-\cos ^{2} x\right) d x \\
& \Rightarrow 2 I=\int_{0}^{\pi} \log \sin ^{2} x d x \\
& \Rightarrow 2 I=2 \int_{0}^{\pi} \log \sin x d x \\
& \Rightarrow I=\int_{0}^{\pi} \log \sin x d x \tag{3}\\
& \sin (\pi-x)=\sin x \\
& \therefore I=2 \int_{0}^{\frac{\pi}{2}} \log \sin x d x \tag{4}\\
& \Rightarrow I=2 \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x=2 \int_{0}^{\frac{\pi}{2}} \log \cos x d x
\end{align*}
$$

Adding (4) and (5), we obtain
$2 I=2 \int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x+\log 2-\log 2) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}(\log 2 \sin x \cos x-\log 2) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x$
Let $2 x=t \square 2 d x=d t$
When $x=0, t=0$ and when $\quad x=\frac{\pi}{2}, \pi=$

$$
\begin{aligned}
& \therefore I=\frac{1 \pi}{2} \int_{0}^{\pi} \log \sin t d t-\frac{-}{2} \log 2 \\
& \Rightarrow I=\frac{1 \pi}{2} I-\frac{-}{2} \log 2 \\
& \Rightarrow \frac{I}{2}=-\frac{\pi}{2} \log 2 \\
& \Rightarrow I=-\pi \log 2
\end{aligned}
$$

Q 17:
$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
Answer:
Let $I=\int_{0}^{0} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
It is known that, $\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x$
$\Rightarrow 2 I=\int_{0}^{a} 1 d x$
$\Rightarrow 2 I=[x]_{0}^{a}$
$\Rightarrow 2 I=a$
$\Rightarrow I=\frac{a}{2}$

Q 18:

$\int_{0}^{4}|x-1| d x$
Answer:
$I=\int_{0}^{4}|x-1| d x$
It can be seen that, $(x-1) \leq 0$ when $0 \leq x \leq 1$ and $(x-1) \geq 0$ when $1 \leq x \leq 4$

$$
\begin{aligned}
I & =\int_{0}^{1}|x-1| d x+\int_{1}^{1}|x-1| d x \quad\left(\int_{a}^{b} f(x)=\int_{a}^{c} f(x)+\int_{x}^{1} f(x)\right) \\
& =\int_{0}^{1}-(x-1) d x+\int_{0}^{1}(x-1) d x \\
& =\left[x-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4} \\
& =1-\frac{1}{2}+\frac{(4)^{2}}{2}-4-\frac{1}{2}+1 \\
& =1-\frac{1}{2}+8-4-\frac{1}{2}+1 \\
& =5
\end{aligned}
$$

Q 19:

Show that $\int_{0}^{\pi} f(x) g(x) d x=2 \int_{0}^{a} f(x) d x$, if f and g are defined as $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$

Answer:

Let $I=\int_{0}^{n} f(x) g(x) d x$
$\Rightarrow I=\int_{0}^{0} f(a-x) g(a-x) d x$
$\left(\int_{0}^{0} f(x) d x=\int_{0}^{0} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{a} f(x) g(a-x) d x$
Adding (1) and (2), we obtain
$2 I=\int_{0}^{a}\{f(x) g(x)+f(x) g(a-x)\} d x$
$\Rightarrow 2 I=\int_{0}^{a} f(x)\{g(x)+g(a-x)\} d x$
$\Rightarrow 2 I=\int_{0}^{a} f(x) \times 4 d x$
$[g(x)+g(a-x)=4]$
$\Rightarrow I=2 \int_{0}^{x} f(x) d x$

Q 20:

The value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$ is
A. 0
B. 2
C. π
D. 1

Answer:
Let $I=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$
$\Rightarrow I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{3} d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan ^{5} x d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \cdot d x$
It is known that if $f(x)$ is an even function, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{x} f(x) d x$ and
if $f(x)$ is an odd function, then $\int_{-a}^{a} f(x) d x=0$
$I=0+0+0+2 \int_{0}^{\frac{\pi}{2}} 1 \cdot d x$
$=2[x]_{0}^{\frac{\pi}{2}}$
$=\frac{2 \pi}{2}$
$\pi=$
Hence, the correct Answer is C.

Q 21:
The value of $\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$ is
A. 2
B. $\frac{3}{4}$
C. 0
D. -2

Answer:

$$
\begin{align*}
& \text { Let } I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x \tag{1}\\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \left[\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right] d x \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x \tag{2}
\end{align*}
$$

Adding (1) and (2), we obtain

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}}\left\{\log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)+\log \left(\frac{4+3 \cos x}{4+3 \sin x}\right)\right\} d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x} \times \frac{4+3 \cos x}{4+3 \sin x}\right) d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \log 1 d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 0 d x \\
& \Rightarrow I=0
\end{aligned}
$$

Hence, the correct Answer is C.

Miscellaneous Solutions

Q 1:

$\frac{1}{x-x^{3}}$
Answer:
$\frac{1}{x-x^{3}}=\frac{1}{x\left(1-x^{2}\right)}=\frac{1}{x(1-x)(1+x)}$
Let $\frac{1}{x(1-x)(1+x)}=\frac{A}{x}+\frac{B}{(1-x)}+\frac{C}{1+x}$
$\Rightarrow 1=A\left(1-x^{2}\right)+B x(1+x)+C x(1-x)$
$\Rightarrow 1=A-A x^{2}+B x+B x^{2}+C x-C x^{2}$
Equating the coefficients of x^{2}, x, and constant term, we obtain
$-A+B-C=0$
$B+C=0$
$A=1$
On solving these equations, we obtain

$$
A=1, B=\frac{1}{2}, \text { and } C=-\frac{1}{2}
$$

From equation (1), we obtain

$$
\begin{aligned}
& \frac{1}{x(1-x)(1+x)}=\frac{1}{x}+\frac{1}{2(1-x)}-\frac{1}{2(1+x)} \\
& \begin{aligned}
\Rightarrow \int \frac{1}{x(1-x)(1+x)} d x & =\int \frac{1}{x} d x+\frac{1}{2} \int \frac{1}{1-x} d x-\frac{1}{2} \int \frac{1}{1+x} d x \\
& =\log |x|-\frac{1}{2} \log |(1-x)|-\frac{1}{2} \log |(1+x)| \\
& =\log |x|-\log \left|(1-x)^{\frac{1}{2}}\right|-\log \left|(1+x)^{\frac{1}{2}}\right| \\
& =\log \left|\frac{x}{(1-x)^{\frac{1}{2}}(1+x)^{\frac{1}{2}}}\right|+\mathrm{C} \\
& =\log \left|\left(\frac{x^{2}}{1-x^{2}}\right)^{\frac{1}{2}}\right|+\mathrm{C} \\
& =\frac{1}{2} \log \left|\frac{x^{2}}{1-x^{2}}\right|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 2:

$$
\frac{1}{\sqrt{x+a}+\sqrt{(x+b)}}
$$

Answer:

$$
\begin{aligned}
& \frac{1}{\sqrt{x+a}+\sqrt{x+b}}=\frac{1}{\sqrt{x+a}+\sqrt{x+b}} \times \frac{\sqrt{x+a}-\sqrt{x+b}}{\sqrt{x+a}-\sqrt{x+b}} \\
&=\frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)} \\
&=\frac{(\sqrt{x+a}-\sqrt{x+b})}{a-b} \\
& \begin{aligned}
\Rightarrow \int \frac{1}{\sqrt{x+a}-\sqrt{x+b}} d x & =\frac{1}{a-b} \int(\sqrt{x+a}-\sqrt{x+b}) d x
\end{aligned} \\
&=\frac{1}{(a-b)}\left[\frac{(x+a)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x+b)^{\frac{3}{2}}}{\frac{3}{2}}\right] \\
&=\frac{2}{3(a-b)}\left[(x+a)^{\frac{3}{2}}-(x+b)^{\frac{3}{2}}\right]+\mathrm{C}
\end{aligned}
$$

Q 3:
$\frac{1}{x \sqrt{a x-x^{2}}}$

Answer:

$$
\begin{aligned}
& \frac{1}{x \sqrt{a x-x^{2}}} \\
& \text { Let } x=\frac{a}{t} \Rightarrow d x=-\frac{a}{t^{2}} d t \\
& \Rightarrow \int \frac{1}{x \sqrt{a x-x^{2}}} d x=\int \frac{1}{\frac{a}{t} \sqrt{a \cdot \frac{a}{t}-\left(\frac{a}{t}\right)^{2}}}\left(-\frac{a}{t^{2}} d t\right) \\
&=-\int \frac{1}{a t} \cdot \frac{1}{\sqrt{\frac{1}{t}-\frac{1}{t^{2}}}} d t \\
&=-\frac{1}{a} \int \frac{1}{\sqrt{\frac{t^{2}}{t}-\frac{t^{2}}{t^{2}}}} d t \\
&=-\frac{1}{a} \int \frac{1}{\sqrt{t-1}} d t \\
&=-\frac{1}{a}[2 \sqrt{t-1}]+\mathrm{C} \\
&=-\frac{1}{a}\left[2 \sqrt{\frac{a}{x}-1}\right]+\mathrm{C} \\
&=-\frac{2}{a}\left(\frac{\sqrt{a-x}}{\sqrt{x}}\right)+\mathrm{C} \\
&=-\frac{2}{a}\left(\sqrt{\frac{a-x}{x}}\right)+\mathrm{C}
\end{aligned}
$$

Q 4:
$\frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}$
Answer:
$\frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}$
Multiplying and dividing by x^{-3}, we obtain

$$
\frac{x^{-3}}{x^{2} \cdot x^{-3}\left(x^{4}+1\right)^{\frac{3}{4}}}=\frac{x^{-3}\left(x^{4}+1\right)^{\frac{-3}{4}}}{x^{2} \cdot x^{-3}}
$$

$$
=\frac{\left(x^{4}+1\right)^{\frac{-3}{4}}}{x^{5} \cdot\left(x^{4}\right)^{-\frac{3}{4}}}
$$

$$
=\frac{1}{x^{5}}\left(\frac{x^{4}+1}{x^{4}}\right)^{-\frac{3}{4}}
$$

$$
=\frac{1}{x^{5}}\left(1+\frac{1}{x^{4}}\right)^{-\frac{3}{4}}
$$

$$
\text { Let } \frac{1}{x^{4}}=t \Rightarrow-\frac{4}{x^{5}} d x=d t \Rightarrow \frac{1}{x^{5}} d x=-\frac{d t}{4}
$$

$$
\therefore \int \frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}} d x=\int \frac{1}{x^{5}}\left(1+\frac{1}{x^{4}}\right)^{-\frac{3}{4}} d x
$$

$$
=-\frac{1}{4} \int(1+t)^{-\frac{3}{4}} d t
$$

$$
=-\frac{1}{4}\left[\frac{(1+t)^{\frac{1}{4}}}{\frac{1}{4}}\right]+\mathrm{C}
$$

$$
=-\frac{1}{4} \frac{\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}}{\frac{1}{4}}+\mathrm{C}
$$

$$
=-\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}+\mathrm{C}
$$

Q 5:
$\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}\left[\right.$ Hint: $\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)}$ Put $\left.x=t^{6}\right]$
Answer:

$$
\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)}
$$

$$
\text { Let } x=t^{6} \Rightarrow d x=6 t^{5} d t
$$

$$
\therefore \int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} d x=\int \frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)^{2}} d x
$$

$$
=\int \frac{6 t^{5}}{t^{2}(1+t)} d t
$$

$$
=6 \int \frac{t^{3}}{(1+t)} d t
$$

On dividing, we obtain

$$
\begin{aligned}
\int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} d x & =6 \int\left\{\left(t^{2}-t+1\right)-\frac{1}{1+t}\right\} d t \\
& =6\left[\left(\frac{t^{3}}{3}\right)-\left(\frac{t^{2}}{2}\right)+t-\log |1+t|\right] \\
& =2 x^{\frac{1}{2}}-3 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}-6 \log \left(1+x^{\frac{1}{6}}\right)+\mathrm{C} \\
& =2 \sqrt{x}-3 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}-6 \log \left(1+x^{\frac{1}{6}}\right)+\mathrm{C}
\end{aligned}
$$

Q 6:
$\frac{5 x}{(x+1)\left(x^{2}+9\right)}$

Answer:
Let $\frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+9\right)}$
$\Rightarrow 5 x=A\left(x^{2}+9\right)+(B x+C)(x+1)$
$\Rightarrow 5 x=A x^{2}+9 A+B x^{2}+B x+C x+C$
Equating the coefficients of x^{2}, x, and constant term, we obtain
$A+B=0$
$B+C=5$
$9 A+C=0$
On solving these equations, we obtain
$A=-\frac{1}{2}, B=\frac{1}{2}$, and $C=\frac{9}{2}$
From equation (1), we obtain

$$
\begin{aligned}
\frac{5 x}{(x+1)\left(x^{2}+9\right)}= & \frac{-1}{2(x+1)}+\frac{\frac{x}{2}+\frac{9}{2}}{\left(x^{2}+9\right)} \\
\int \frac{5 x}{(x+1)\left(x^{2}+9\right)} d x & =\int\left\{\frac{-1}{2(x+1)}+\frac{(x+9)}{2\left(x^{2}+9\right)}\right\} d x \\
& =-\frac{1}{2} \log |x+1|+\frac{1}{2} \int \frac{x}{x^{2}+9} d x+\frac{9}{2} \int \frac{1}{x^{2}+9} d x \\
& =-\frac{1}{2} \log |x+1|+\frac{1}{4} \int \frac{2 x}{x^{2}+9} d x+\frac{9}{2} \int \frac{1}{x^{2}+9} d x \\
& =-\frac{1}{2} \log |x+1|+\frac{1}{4} \log \left|x^{2}+9\right|+\frac{9}{2} \cdot \frac{1}{3} \tan ^{-1} \frac{x}{3} \\
& =-\frac{1}{2} \log |x+1|+\frac{1}{4} \log \left(x^{2}+9\right)+\frac{3}{2} \tan ^{-1} \frac{x}{3}+C
\end{aligned}
$$

Q 7:
$\frac{\sin x}{\sin (x-a)}$
Answer:
$\frac{\sin x}{\sin (x-a)}$
Let $x-a=t \square d x=d t$

$$
\begin{aligned}
\int \frac{\sin x}{\sin (x-a)} d x & =\int \frac{\sin (t+a)}{\sin t} d t \\
& =\int \frac{\sin t \cos a+\cos t \sin a}{\sin t} d t \\
& =\int(\cos a+\cot t \sin a) d t \\
& =t \cos a+\sin a \log |\sin t|+C_{1} \\
& =(x-a) \cos a+\sin a \log |\sin (x-a)|+\mathrm{C}_{1} \\
& =x \cos a+\sin a \log |\sin (x-a)|-a \cos a+\mathrm{C}_{1} \\
& =\sin a \log |\sin (x-a)|+x \cos a+\mathrm{C}
\end{aligned}
$$

Q 8:
$\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}$

Answer:

$$
\begin{aligned}
& \begin{aligned}
\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}} & =\frac{e^{4 \log x}\left(e^{\log x}-1\right)}{e^{2 \log x}\left(e^{\log x}-1\right)} \\
& =e^{2 \log x} \\
& =e^{\log x^{2}} \\
& =x^{2}
\end{aligned} \\
& \therefore \int \frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}} d x=\int x^{2} d x=\frac{x^{3}}{3}+\mathrm{C}
\end{aligned}
$$

Q 9:
$\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$
Answer:
$\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$
Let $\sin x=t \square \cos x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\cos x}{\sqrt{4-\sin ^{2} x}} d x & =\int \frac{d t}{\sqrt{(2)^{2}-(t)^{2}}} \\
& =\sin ^{-1}\left(\frac{t}{2}\right)+C \\
& =\sin ^{-1}\left(\frac{\sin x}{2}\right)+C
\end{aligned}
$$

Q 10:

$$
\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x}
$$

Answer:

$$
\begin{aligned}
& \begin{aligned}
\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} & =\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{4} x-\cos ^{4} x\right)}{\sin ^{2} x+\cos ^{2} x-\sin ^{2} x \cos ^{2} x-\sin ^{2} x \cos ^{2} x} \\
& =\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)}{\left(\sin ^{2} x-\sin ^{2} x \cos ^{2} x\right)+\left(\cos ^{2} x-\sin ^{2} x \cos ^{2} x\right)} \\
& =\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)}{\sin ^{2} x\left(1-\cos ^{2} x\right)+\cos ^{2} x\left(1-\sin ^{2} x\right)} \\
& =\frac{-\left(\sin ^{4} x+\cos ^{4} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)}{\left(\sin ^{4} x+\cos ^{4} x\right)} \\
& =-\cos 2 x
\end{aligned} \\
& \therefore \int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x=\int-\cos 2 x d x=-\frac{\sin 2 x}{2}+C
\end{aligned}
$$

Q 11:
$\frac{1}{\cos (x+a) \cos (x+b)}$
Answer:
$\frac{1}{\cos (x+a) \cos (x+b)}$
Multiplying and dividing by $\sin (a-b)$, we obtain

$$
\begin{aligned}
& \frac{1}{\sin (a-b)}\left[\frac{\sin (a-b)}{\cos (x+a) \cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin [(x+a)-(x+b)]}{\cos (x+a) \cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin (x+a) \cdot \cos (x+b)-\cos (x+a) \sin (x+b)}{\cos (x+a) \cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin (x+a)}{\cos (x+a)}-\frac{\sin (x+b)}{\cos (x+b)}\right] \\
& =\frac{1}{\sin (a-b)}[\tan (x+a)-\tan (x+b)] \\
& \int \frac{1}{\cos (x+a) \cos (x+b)} d x=\frac{1}{\sin (a-b)} \int[\tan (x+a)-\tan (x+b)] d x \\
& =\frac{1}{\sin (a-b)}[-\log |\cos (x+a)|+\log |\cos (x+b)|]+\mathrm{C} \\
& =\frac{1}{\sin (a-b)} \log \left\lvert\, \frac{\cos (x+b) \mid}{\cos (x+a) \mid+\mathrm{C}}\right.
\end{aligned}
$$

Q 12:

$\frac{x^{3}}{\sqrt{1-x^{8}}}$
Answer:
$\frac{x^{3}}{\sqrt{1-x^{8}}}$
Let $x^{4}=t \square 4 x^{3} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{x^{3}}{\sqrt{1-x^{8}}} d x & =\frac{1}{4} \int \frac{d t}{\sqrt{1-t^{2}}} \\
& =\frac{1}{4} \sin ^{-1} t+\mathrm{C} \\
& =\frac{1}{4} \sin ^{-1}\left(x^{4}\right)+\mathrm{C}
\end{aligned}
$$

Q 13:
$\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}$
Answer
$\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}$
Let $e^{x}=t \square e^{x} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)} d x & =\int \frac{d t}{(t+1)(t+2)} \\
& =\int\left[\frac{1}{(t+1)}-\frac{1}{(t+2)}\right] d t \\
& =\log |t+1|-\log |t+2|+\mathrm{C} \\
& =\log \left|\frac{t+1}{t+2}\right|+\mathrm{C} \\
& =\log \left|\frac{1+e^{x}}{2+e^{x}}\right|+\mathrm{C}
\end{aligned}
$$

Q 14:

$$
\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

Answer

$$
\begin{aligned}
& \therefore \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(x^{2}+4\right)} \\
& \Rightarrow 1=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+1\right) \\
& \Rightarrow 1=A x^{3}+4 A x+B x^{2}+4 B+C x^{3}+C x+D x^{2}+D
\end{aligned}
$$

Equa ng the coeff cents of x^{3}, x^{2}, x, and constant term, we obta n
$A+C=0$
$B+D=0$
$4 A+C=0$
$4 B+D=1$
On so $v \mathrm{ng}$ these equat ons, we obta n
$A=0, B=\frac{1}{3}, C=0$, and $D=-\frac{1}{3}$
From equat on (1) we obta n

$$
\begin{aligned}
& \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{1}{3\left(x^{2}+1\right)}-\frac{1}{3\left(x^{2}+4\right)} \\
& \begin{aligned}
\int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x & =\frac{1}{3} \int \frac{1}{x^{2}+1} d x-\frac{1}{3} \int \frac{1}{x^{2}+4} d x \\
& =\frac{1}{3} \tan ^{-1} x-\frac{1}{3} \cdot \frac{1}{2} \tan ^{-1} \frac{x}{2}+\mathrm{C} \\
& =\frac{1}{3} \tan ^{-1} x-\frac{1}{6} \tan ^{-1} \frac{x}{2}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 15:
$\cos ^{3} x e^{\log \sin x}$
Answer:

$$
\left.\begin{array}{l}
\cos ^{3} x e^{\log \sin x}=\cos ^{3} x \times \sin x \\
\text { Let } \cos x=t \square-\sin x d x=d t \\
\Rightarrow \int \cos ^{3} x e^{\log \sin x} d x
\end{array}=\int \cos ^{3} x \sin x d x\right] \text { } \begin{aligned}
& =-\int t \cdot d t \\
& =-\frac{t^{4}}{4}+\mathrm{C} \\
& =-\frac{\cos ^{4} x}{4}+\mathrm{C}
\end{aligned}
$$

Q 16:

$e^{3 \log x}\left(x^{4}+1\right)^{-1}$
Answer:
$e^{3 \log x}\left(x^{4}+1\right)^{-1}=e^{\log x^{3}}\left(x^{4}+1\right)^{-1}=\frac{x^{3}}{\left(x^{4}+1\right)}$
Let $x^{4}+1=t \Rightarrow 4 x^{3} d x=d t$

$$
\begin{aligned}
\Rightarrow \int e^{3 \log x}\left(x^{4}+1\right)^{-1} d x & =\int \frac{x^{3}}{\left(x^{4}+1\right)} d x \\
& =\frac{1}{4} \int \frac{d t}{t} \\
& =\frac{1}{4} \log |t|+\mathrm{C} \\
& =\frac{1}{4} \log \left|x^{4}+1\right|+\mathrm{C} \\
& =\frac{1}{4} \log \left(x^{4}+1\right)+\mathrm{C}
\end{aligned}
$$

Q 17:

$f^{\prime}(a x+b)[f(a x+b)]^{n}$
Answer:

$$
\begin{aligned}
& f^{\prime}(a x+b)[f(a x+b)]^{n} \\
& \text { Let } f(a x+b)=t \Rightarrow a f^{\prime}(a x+b) d x=d t \\
& \begin{aligned}
\Rightarrow \int f^{\prime}(a x+b)[f(a x+b)]^{n} d x & =\frac{1}{a} \int t^{n} d t \\
& =\frac{1}{a}\left[\frac{t^{n+1}}{n+1}\right] \\
& =\frac{1}{a(n+1)}(f(a x+b))^{n+1}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 18:

$$
\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}
$$

Answer:

$$
\begin{aligned}
\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}} & =\frac{1}{\sqrt{\sin ^{3} x(\sin x \cos \alpha+\cos x \sin \alpha)}} \\
& =\frac{1}{\sqrt{\sin ^{4} x \cos \alpha+\sin ^{3} x \cos x \sin \alpha}} \\
& =\frac{1}{\sin ^{2} x \sqrt{\cos \alpha+\cot x \sin \alpha}} \\
& =\frac{\operatorname{cosec}^{2} x}{\sqrt{\cos \alpha+\cot x \sin \alpha}}
\end{aligned}
$$

Let $\cos \alpha+\cot x \sin \alpha=t \Rightarrow-\operatorname{cosec}^{2} x \sin \alpha d x=d t$

$$
\begin{aligned}
\therefore \int \frac{1}{\sin ^{3} x \sin (x+\alpha)} d x & =\int \frac{\operatorname{cosec}^{2} x}{\sqrt{\cos \alpha+\cot x \sin \alpha}} d x \\
& =\frac{-1}{\sin \alpha} \int \frac{d t}{\sqrt{t}} \\
& =\frac{-1}{\sin \alpha}[2 \sqrt{t}]+\mathrm{C} \\
& =\frac{-1}{\sin \alpha}[2 \sqrt{\cos \alpha+\cot x \sin \alpha}]+\mathrm{C} \\
& =\frac{-2}{\sin \alpha} \sqrt{\cos \alpha+\frac{\cos x \sin \alpha}{\sin x}}+\mathrm{C} \\
& =\frac{-2}{\sin \alpha} \sqrt{\frac{\sin x \cos \alpha+\cos x \sin \alpha}{\sin x}}+\mathrm{C} \\
& =-\frac{2}{\sin \alpha} \sqrt{\frac{\sin (x+\alpha)}{\sin x}}+\mathrm{C}
\end{aligned}
$$

Q 19:

$\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}, x \in[0,1]$
Answer:
Let $I=\int \frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}} d x$

It is known that, $\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}=\frac{\pi}{2}$

$$
\begin{align*}
\Rightarrow I & =\int \frac{\left(\frac{\pi}{2}-\cos ^{-1} \sqrt{x}\right)-\cos ^{-1} \sqrt{x}}{\frac{\pi}{2}} d x \\
& =\frac{2 \pi}{\pi} \int\left(\frac{-2}{2}-2 \cos ^{-1} \sqrt{x}\right) d x \\
& =\frac{2 \pi}{\pi} \cdot \frac{-}{2} \int 1 \cdot d x-\frac{4}{\pi} \int \cos ^{-1} \sqrt{x} d x \\
& =x-\frac{4}{\pi} \int \cos ^{-1} \sqrt{x} d x \tag{1}
\end{align*}
$$

Let $I_{1}=\int \cos ^{-1} \sqrt{x} d x$
Also, let $\sqrt{x}=t \Rightarrow d x=2 t d t$
$\Rightarrow I_{1}=2 \int \cos ^{-1} t \cdot t d t$

$$
=2\left[\cos ^{-1} t \cdot \frac{t^{2}}{2}-\int \frac{-1}{\sqrt{1-t^{2}}} \cdot \frac{t^{2}}{2} d t\right]
$$

$$
=t^{2} \cos ^{-1} t+\int \frac{t^{2}}{\sqrt{1-t^{2}}} d t
$$

$$
=t^{2} \cos ^{-1} t-\int \frac{1-t^{2}-1}{\sqrt{1-t^{2}}} d t
$$

$$
=t^{2} \cos ^{-1} t-\int \sqrt{1-t^{2}} d t+\int \frac{1}{\sqrt{1-t^{2}}} d t
$$

$$
=t^{2} \cos ^{-1} t-\frac{t}{2} \sqrt{1-t^{2}}-\frac{1}{2} \sin ^{-1} t+\sin ^{-1} t
$$

$$
=t^{2} \cos ^{-1} t-\frac{t}{2} \sqrt{1-t^{2}}+\frac{1}{2} \sin ^{-1} t
$$

From equation (1), we obtain

$$
\begin{aligned}
I & =x-\frac{4}{\pi}\left[t^{2} \cos t-\frac{t}{2} \sqrt{1-t^{2}}+\frac{1}{2} \sin ^{-1} t\right] \\
& =x-\frac{4}{\pi}\left[x \cos ^{-1} \sqrt{x}-\frac{\sqrt{x}}{2} \sqrt{1-x}+\frac{1}{2} \sin ^{-1} \sqrt{x}\right] \\
& =x-\frac{4 \pi}{\pi}\left[x\left(\frac{x^{2}}{2}-\sin ^{-1} \sqrt{x}\right)-\frac{\sqrt{x-x^{2}}}{2}+\frac{\sin ^{-1} \sqrt{x}}{2}\right] \\
& =x-2 x+\frac{4 x}{\pi} \sin ^{-1} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^{2}}-\frac{2}{\pi} \sin ^{-1} \sqrt{x} \\
& =-x+\frac{2}{\pi}\left[(2 x-1) \sin ^{-1} \sqrt{x}\right]+\frac{2}{\pi} \sqrt{x-x^{2}}+\mathrm{C} \\
& =\frac{2(2 x-1)}{\pi} \sin ^{-1} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^{2}}-x+\mathrm{C}
\end{aligned}
$$

Q 20:

$\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$

Answer:

$$
I=\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} d x
$$

Let $x=\cos ^{2} \theta \Rightarrow d x=-2 \sin \theta \cos \theta d \theta$
$I=\int \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-2 \sin \theta \cos \theta) d \theta$
$=-\int \sqrt{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}} \sin 2 \theta d \theta$
$=-\int \tan \frac{\theta}{2} \cdot 2 \sin \theta \cos \theta d \theta$
$=-2 \int \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) \cos \theta d \theta$

$$
\begin{aligned}
& =-4 \int \sin ^{2} \frac{\theta}{2} \cos \theta d \theta \\
& =-4 \int \sin ^{2} \frac{\theta}{2} \cdot\left(2 \cos ^{2} \frac{\theta}{2}-1\right) d \theta \\
& =-4 \int\left(2 \sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right) d \theta \\
& =-8 \int \sin ^{2} \frac{\theta}{2} \cdot \cos ^{2} \frac{\theta}{2} d \theta+4 \int \sin ^{2} \frac{\theta}{2} d \theta \\
& =-2 \int \sin ^{2} \theta d \theta+4 \int \sin ^{2} \frac{\theta}{2} d \theta \\
& =-2 \int\left(\frac{1-\cos 2 \theta}{2}\right) d \theta+4 \int \frac{1-\cos \theta}{2} d \theta \\
& =-2\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]+4\left[\frac{\theta}{2}-\frac{\sin \theta}{2}\right]+\mathrm{C} \\
& =-\theta+\frac{\sin 2 \theta}{2}+2 \theta-2 \sin \theta+\mathrm{C} \\
& =\theta+\frac{\sin 2 \theta}{2}-2 \sin \theta+\mathrm{C} \\
& =\theta+\frac{2 \sin \theta \cos ^{2} \theta}{2}-2 \sin \theta+\mathrm{C} \\
& =\theta+\sqrt{1-\cos ^{2} \theta} \cdot \cos \theta-2 \sqrt{1-\cos ^{2} \theta}+\mathrm{C} \\
& =\cos { }^{-1} \sqrt{x}+\sqrt{1-x} \cdot \sqrt{x}-2 \sqrt{1-x}+\mathrm{C} \\
& =-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x(1-x)}+\mathrm{C} \\
& =-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x-x^{2}}+\mathrm{C}
\end{aligned}
$$

Q 21:
$\frac{2+\sin 2 x}{1+\cos 2 x} e^{x}$
Answer:

$$
\begin{aligned}
I & =\int\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) e^{x} \\
& =\int\left(\frac{2+2 \sin x \cos x}{2 \cos ^{2} x}\right) e^{x} \\
& =\int\left(\frac{1+\sin x \cos x}{\cos ^{2} x}\right) e^{x} \\
& =\int\left(\sec ^{2} x+\tan x\right) e^{x}
\end{aligned}
$$

Let $f(x)=\tan x \Rightarrow f^{\prime}(x)=\sec ^{2} x$
$\therefore I=\int\left(f(x)+f^{\prime}(x)\right] e^{x} d x$
$=e^{x} f(x)+\mathrm{C}$
$=e^{x} \tan x+\mathrm{C}$

Q 22:

$$
\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}
$$

Answer

$$
\begin{align*}
& \text { Let } \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)} \tag{1}\\
& \Rightarrow x^{2}+x+1=A(x+1)(x+2)+B(x+2)+C\left(x^{2}+2 x+1\right) \\
& \Rightarrow x^{2}+x+1=A\left(x^{2}+3 x+2\right)+B(x+2)+C\left(x^{2}+2 x+1\right) \\
& \Rightarrow x^{2}+x+1=(A+C) x^{2}+(3 A+B+2 C) x+(2 A+2 B+C)
\end{align*}
$$

Equating the coefficients of x^{2}, x, and constant term, we obtain
$A+C=1,3 A+B+2 C=1, \quad 2 A+2 B+C=1$
On solving these equations, we obtain
$A=-2, B=1$, and $C=3$
From equation (1), we obtain

$$
\begin{aligned}
& \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{-2}{(x+1)}+\frac{3}{(x+2)}+\frac{1}{(x+1)^{2}} \\
& \begin{aligned}
\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x & =-2 \int \frac{1}{x+1} d x+3 \int \frac{1}{(x+2)} d x+\int \frac{1}{(x+1)^{2}} d x \\
& =-2 \log |x+1|+3 \log |x+2|-\frac{1}{(x+1)}+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Q 23:

$$
\tan ^{-1} \sqrt{\frac{1-x}{1+x}}
$$

Answer

$$
\begin{aligned}
& I=\tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x \\
& \text { Let } x=\cos \theta \Rightarrow d x=-\sin \theta d \theta \\
& I=\int \tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-\sin \theta d \theta) \\
&=-\int \tan ^{-1} \sqrt{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}} \sin \theta d \theta \\
&=-\int \tan ^{-1} \tan \frac{\theta}{2} \cdot \sin \theta d \theta \\
&=-\frac{1}{2} \int \theta \cdot \sin \theta d \theta \\
&=-\frac{1}{2}\left[\theta \cdot(-\cos \theta)-\int 1 \cdot(-\cos \theta) d \theta\right] \\
&=-\frac{1}{2}[-\theta \cos \theta+\sin \theta] \\
&=+\frac{1}{2} \theta \cos \theta-\frac{1}{2} \sin \theta \\
&=\frac{1}{2} \cos ^{-1} x \cdot x-\frac{1}{2} \sqrt{1-x^{2}}+\mathrm{C} \\
&=\frac{x}{2} \cos ^{-1} x-\frac{1}{2} \sqrt{1-x^{2}}+\mathrm{C} \\
&=\frac{1}{2}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)+\mathrm{C}
\end{aligned}
$$

Q 24:
$\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}$
Answer:

$$
\begin{aligned}
\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}} & =\frac{\sqrt{x^{2}+1}}{x^{4}}\left[\log \left(x^{2}+1\right)-\log x^{2}\right] \\
& =\frac{\sqrt{x^{2}+1}}{x^{4}}\left[\log \left(\frac{x^{2}+1}{x^{2}}\right)\right] \\
& =\frac{\sqrt{x^{2}+1}}{x^{4}} \log \left(1+\frac{1}{x^{2}}\right) \\
& =\frac{1}{x^{3}} \sqrt{\frac{x^{2}+1}{x^{2}}} \log \left(1+\frac{1}{x^{2}}\right) \\
& =\frac{1}{x^{3}} \sqrt{1+\frac{1}{x^{2}}} \log \left(1+\frac{1}{x^{2}}\right)
\end{aligned}
$$

Let $1+\frac{1}{x^{2}}=t \Rightarrow \frac{-2}{x^{3}} d x=d t$

$$
\begin{aligned}
\therefore I & =\int \frac{1}{x^{3}} \sqrt{1+\frac{1}{x^{2}}} \log \left(1+\frac{1}{x^{2}}\right) d x \\
& =-\frac{1}{2} \int \sqrt{t} \log t d t \\
& =-\frac{1}{2} \int t^{\frac{1}{2}} \cdot \log t d t
\end{aligned}
$$

Integrating by parts, we obtain

$$
\begin{aligned}
I & =-\frac{1}{2}\left[\log t \cdot \int t^{\frac{1}{2}} d t-\left\{\left(\frac{d}{d t} \log t\right) \int t^{\frac{1}{2}} d t\right\} d t\right] \\
& =-\frac{1}{2}\left[\log t \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\int \frac{1}{t} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} d t\right] \\
& =-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{2}{3} \int t^{\frac{1}{2}} d t\right] \\
& =-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{4}{9} t^{\frac{3}{2}}\right] \\
& =-\frac{1}{3} t^{\frac{3}{2}} \log t+\frac{2}{9} t^{\frac{3}{2}} \\
& =-\frac{1}{3} t^{\frac{3}{2}}\left[\log t-\frac{2}{3}\right] \\
& =-\frac{1}{3}\left(1+\frac{1}{x^{2}}\right)^{\frac{3}{2}}\left[\log \left(1+\frac{1}{x^{2}}\right)-\frac{2}{3}\right]+\mathrm{C}
\end{aligned}
$$

Q 25:

$$
\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x
$$

Answer:

$$
\begin{aligned}
& I=\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x \\
& =\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{1-2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin ^{2} \frac{x}{2}}\right) d x \\
& =\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{\operatorname{cosec}^{2} \frac{x}{2}}{2}-\cot \frac{x}{2}\right) d x \\
& \text { Let } f(x)=-\cot \frac{x}{2} \\
& \Rightarrow f^{\prime}(x)=-\left(-\frac{1}{2} \operatorname{cosec}^{2} \frac{x}{2}\right)=\frac{1}{2} \operatorname{cosec}^{2} \frac{x}{2} \\
& \therefore I=\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(f(x)+f^{\prime}(x)\right] d x \\
& =\left[e^{x} \cdot f(x) d x\right]_{\frac{\pi}{2}}^{\pi} \\
& =-\left[e^{x} \cdot \cot \frac{x}{2}\right]_{\frac{\pi}{2}}^{x} \\
& =-\left[e^{\pi} \times \cot \frac{\pi}{2}-e^{\frac{\pi}{2}} \times \cot \frac{\pi}{4}\right] \\
& =-\left[e^{\pi} \times 0-e^{\frac{\pi}{2}} \times 1\right] \\
& =e^{\frac{\pi}{2}}
\end{aligned}
$$

Q 26:

$\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$

Answer:

Let $I=\int_{0}^{\pi} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \frac{\frac{(\sin x \cos x)}{\cos ^{4} x}}{\frac{\left(\cos ^{4} x+\sin ^{4} x\right)}{\cos ^{4} x}} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \frac{\tan x \sec ^{2} x}{1+\tan ^{4} x} d x$
Let $\tan ^{2} x=t \Rightarrow 2 \tan x \sec ^{2} x d x=d t$
When $x=0, t=0$ and when $x=\frac{\pi}{4}, t=1$

$$
\begin{aligned}
\therefore I & =\frac{1}{2} \int_{0}^{1} \frac{d t}{1+t^{2}} \\
& =\frac{1}{2}\left[\tan ^{-1} t\right]_{0}^{1} \\
& =\frac{1}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\
& =\frac{1}{2}\left[\frac{\pi}{4}\right] \\
& =\frac{\pi}{8}
\end{aligned}
$$

Q 27:
$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x d x}{\cos ^{2} x+4 \sin ^{2} x}$
Answer:
Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4\left(1-\cos ^{2} x\right)} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4-4 \cos ^{2} x} d x$
$\Rightarrow I=\frac{-1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4-3 \cos ^{2} x-4}{4-3 \cos ^{2} x} d x$
$\Rightarrow I=\frac{-1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4-3 \cos ^{2} x}{4-3 \cos ^{2} x} d x+\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4}{4-3 \cos ^{2} x} d x$
$\Rightarrow I=\frac{-1}{3} \int_{0}^{\frac{\pi}{2}} 1 d x+\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} x}{4 \sec ^{2} x-3} d x$
$\Rightarrow I=\frac{-1}{3}[x]_{0}^{\frac{\pi}{2}}+\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} x}{4\left(1+\tan ^{2} x\right)-3} d x$
$\Rightarrow I=-\frac{\pi}{6}+\frac{2}{3} \int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} x}{1+4 \tan ^{2} x} d x$

Consider, $\int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} x}{1+4 \tan ^{2} x} d x$
Let $2 \tan x=t \Rightarrow 2 \sec ^{2} x d x=d t$
When $x=0, t=0$ and when $\quad x=\frac{\pi}{2}, t=\infty$

$$
\begin{aligned}
\Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} x}{1+4 \tan ^{2} x} d x & =\int_{0}^{\infty} \frac{d t}{1+t^{2}} \\
& =\left[\tan ^{-1} t\right]_{0}^{\infty} \\
& =\left[\tan ^{-1}(\infty)-\tan ^{-1}(0)\right] \\
& =\frac{\pi}{2}
\end{aligned}
$$

Therefore, from (1), we obtain
$I=-\frac{\pi}{6}+\frac{2}{3}\left[\frac{\pi}{2}\right]=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}$

Q 28:
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$
Answer:
Let $I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$
$\Rightarrow I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{(\sin x+\cos x)}{\sqrt{-(-\sin 2 x)}} d x$
$\Rightarrow I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{-(-1+1-2 \sin x \cos x)}} d x$
$\Rightarrow I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{(\sin x+\cos x)}{\sqrt{1-\left(\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x\right)}} d x$
$\Rightarrow I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{(\sin x+\cos x) d x}{\sqrt{1-(\sin x-\cos x)^{2}}}$
Let $(\sin x-\cos x)=t \Rightarrow(\sin x+\cos x) d x=d t$
When $\quad x=\frac{\pi}{6}, t=\left(\frac{1-\sqrt{3}}{2}\right)$ and when $\quad x=\frac{\pi}{3}, t=\left(\frac{\sqrt{3}-1}{2}\right)$
$I=\int_{\frac{1-\sqrt{3}}{2}}^{\frac{\sqrt{3}-1}{2}} \frac{d t}{\sqrt{1-t^{2}}}$
$\Rightarrow I=\int_{-\left(\frac{\sqrt{3}-1}{2}\right)}^{\frac{\sqrt{3}-1}{2}} \frac{d t}{\sqrt{1-t^{2}}}$

As $\frac{1}{\sqrt{1-(-t)^{2}}}=\frac{1}{\sqrt{1-t^{2}}}$, therefore, $\frac{1}{\sqrt{1-t^{2}}}$ is an even function.

It is known that if $f(x)$ is an even function, then $\int_{-a}^{n} f(x) d x=2 \int_{0}^{a} f(x) d x$

$$
\begin{aligned}
\Rightarrow I & =2 \int_{0}^{\frac{\sqrt{3}-1}{2}} \frac{d t}{\sqrt{1-t^{2}}} \\
& =\left[2 \sin ^{-1} t\right]_{0}^{\frac{\sqrt{3}-1}{2}} \\
& =2 \sin ^{-1}\left(\frac{\sqrt{3}-1}{2}\right)
\end{aligned}
$$

Q 29:
$\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}$
Answer:
Let $I=\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}$
$I=\int_{0}^{1} \frac{1}{(\sqrt{1+x}-\sqrt{x})} \times \frac{(\sqrt{1+x}+\sqrt{x})}{(\sqrt{1+x}+\sqrt{x})} d x$
$=\int_{0}^{1} \frac{\sqrt{1+x}+\sqrt{x}}{1+x-x} d x$
$=\int_{0}^{1} \sqrt{1+x} d x+\int_{0}^{1} \sqrt{x} d x$
$=\left[\frac{2}{3}(1+x)^{\frac{3}{2}}\right]_{0}^{1}+\left[\frac{2}{3}(x)^{\frac{3}{2}}\right]_{0}^{1}$
$=\frac{2}{3}\left[(2)^{\frac{3}{2}}-1\right]+\frac{2}{3}[1]$
$=\frac{2}{3}(2)^{\frac{3}{2}}$
$=\frac{2 \cdot 2 \sqrt{2}}{3}$
$=\frac{4 \sqrt{2}}{3}$

Q 30:

$\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$
Answer:
Let $I=\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$
Also, let $\sin x-\cos x=t \Rightarrow(\cos x+\sin x) d x=d t$
When $x=0, t=-1$ and when $x=\frac{\pi}{4}, t=0$
$\Rightarrow(\sin x-\cos x)^{2}=t^{2}$
$\Rightarrow \sin ^{2} x+\cos ^{2} x-2 \sin x \cos x=t^{2}$
$\Rightarrow 1-\sin 2 x=t^{2}$
$\Rightarrow \sin 2 x=1-t^{2}$

$$
\begin{aligned}
\therefore I & =\int_{-1}^{0} \frac{d t}{9+16\left(1-t^{2}\right)} \\
& =\int_{-1}^{0} \frac{d t}{9+16-16 t^{2}} \\
& =\int_{-1}^{0} \frac{d t}{25-16 t^{2}}=\int_{-1}^{0} \frac{d t}{(5)^{2}-(4 t)^{2}} \\
& =\frac{1}{4}\left[\frac{1}{2(5)} \log \left|\frac{5+4 t}{5-4 t}\right|\right]_{-1}^{0} \\
& =\frac{1}{40}\left[\log (1)-\log \left|\frac{1}{9}\right|\right] \\
& =\frac{1}{40} \log 9
\end{aligned}
$$

Q 31:
$\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x$
Answer:

Let $I=\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x=\int_{0}^{\frac{\pi}{2}} 2 \sin x \cos x \tan ^{-1}(\sin x) d x$
Also, let $\sin x=t \Rightarrow \cos x d x=d t$
When $x=0, t=0$ and when $x=\frac{\pi}{2}, t=1$
$\Rightarrow I=2 \int_{0}^{1} t \tan ^{-1}(t) d t$
Consider $\int t \cdot \tan ^{-1} t d t=\tan ^{-1} t \cdot \int t d t-\int\left\{\frac{d}{d t}\left(\tan ^{-1} t\right) \int t d t\right\} d t$
$=\tan ^{-1} t \cdot \frac{t^{2}}{2}-\int \frac{1}{1+t^{2}} \cdot \frac{t^{2}}{2} d t$
$=\frac{t^{2} \tan ^{-1} t}{2}-\frac{1}{2} \int \frac{t^{2}+1-1}{1+t^{2}} d t$
$=\frac{t^{2} \tan ^{-1} t}{2}-\frac{1}{2} \int 1 d t+\frac{1}{2} \int \frac{1}{1+t^{2}} d t$
$=\frac{t^{2} \tan ^{-1} t}{2}-\frac{1}{2} \cdot t+\frac{1}{2} \tan ^{-1} t$
$\Rightarrow \int_{0}^{1} t \cdot \tan ^{-1} t d t=\left[\frac{t^{2} \cdot \tan ^{-1} t}{2}-\frac{t}{2}+\frac{1}{2} \tan ^{-1} t\right]_{0}^{1}$
$=\frac{1}{2}\left[\frac{\pi}{4}-1+\frac{\pi}{4}\right]$
$=\frac{1}{2}\left[\frac{\pi}{2}-1\right]=\frac{\pi}{4}-\frac{1}{2}$
From equation (1), we obtain
$I=2\left[\frac{\pi}{4}-\frac{1}{2}\right]=\frac{\pi}{2}-1$

$$
\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x
$$

Answer:
Let $I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
$I=\int_{0}^{\pi}\left\{\frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x)+\tan (\pi-x)}\right\} d x$
$\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\pi}\left\{\frac{-(\pi-x) \tan x}{-(\sec x+\tan x)}\right\} d x$
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\tan x} d x$
Adding (1) and (2), we obtain

$$
2 I=\int_{0}^{\pi} \frac{\pi \tan x}{\sec x+\tan x} d x
$$

$$
\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}+\frac{\sin x}{\cos x}} d x
$$

$$
\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\sin x+1-1}{1+\sin x} d x
$$

$$
\Rightarrow 2 I=\pi \int_{0}^{\pi} 1 \cdot d x-\pi \int_{0}^{\pi} \frac{1}{1+\sin x} d x
$$

$$
\Rightarrow 2 I=\pi[x]_{0}^{\pi}-\pi \int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x
$$

$$
\Rightarrow 2 I=\pi^{2}-\pi \int_{0}^{x}\left(\sec ^{2} x-\tan x \sec x\right) d x
$$

$$
\Rightarrow 2 I=\pi^{2}-\pi[\tan x-\sec x]_{0}^{\pi}
$$

$$
\Rightarrow 2 I=\pi^{2}-\pi[\tan \pi-\sec \pi-\tan 0+\sec 0]
$$

$$
\Rightarrow 2 I=\pi^{2}-\pi[0-(-1)-0+1]
$$

$$
\Rightarrow 2 I=\pi^{2}-2 \pi
$$

$$
\Rightarrow 2 I=\pi(\pi-2)
$$

$$
\Rightarrow I=\frac{\pi}{2}(\pi-2)
$$

$\int^{4}[|x-1|+|x-2|+|x-3|] d x$
Answer
Let $I=\int_{1}^{1}[|x-1|+|x-2|+|x-3|] d x$
$\Rightarrow I=\int_{1}^{1}|x-1| d x+\int_{1}^{1}|x-2| d x+\int_{1}^{1}|x-3| d x$
$I=I_{1}+I_{2}+I_{3}$
where, $I_{1}=\int_{1}^{4}|x-1| d x, I_{2}=\int_{1}^{4}|x-2| d x$, and $I_{3}=\int_{1}^{4}|x-3| d x$
$I_{1}=\int_{1}^{4}|x-1| d x$
$(x-1) \geq 0$ for $1 \leq x \leq 4$
$\therefore I_{1}=\int_{1}^{4}(x-1) d x$
$\Rightarrow I_{1}=\left[\frac{x^{2}}{x}-x\right]_{1}^{4}$
$\Rightarrow I_{1}=\left[8-4-\frac{1}{2}+1\right]=\frac{9}{2}$
$I_{2}=\int_{1}^{4}|x-2| d x$
$x-2 \geq 0$ for $2 \leq x \leq 4$ and $x-2 \leq 0$ for $1 \leq x \leq 2$
$\therefore I_{2}=\int_{1}^{2}(2-x) d x+\int_{2}^{4}(x-2) d x$
$\Rightarrow I_{2}=\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2}+\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}$
$\Rightarrow I_{2}=\left[4-2-2+\frac{1}{2}\right]+[8-8-2+4]$
$\Rightarrow I_{2}=\frac{1}{2}+2=\frac{5}{2}$
$I_{3}=\int_{1}^{4}|x-3| d x$
$x-3 \geq 0$ for $3 \leq x \leq 4$ and $x-3 \leq 0$ for $1 \leq x \leq 3$
$\therefore I_{3}=\int_{1}^{3}(3-x) d x+\int_{3}^{4}(x-3) d x$
$\Rightarrow I_{3}=\left[3 x-\frac{x^{2}}{2}\right]_{1}^{3}+\left[\frac{x^{2}}{2}-3 x\right]_{3}^{4}$
$\Rightarrow I_{3}=\left[9-\frac{9}{2}-3+\frac{1}{2}\right]+\left[8-12-\frac{9}{2}+9\right]$
$\Rightarrow I_{3}=[6-4]+\left[\frac{1}{2}\right]=\frac{5}{2}$
From equat ons (1), (2), (3), and (4), we obta n
$I=\frac{9}{2}+\frac{5}{2}+\frac{5}{2}=\frac{19}{2}$

Q 34:

$\int^{3} \frac{d x}{x^{2}(x+1)}=\frac{2}{3}+\log \frac{2}{3}$
Answer Let $I=\int^{3} \frac{d x}{x^{2}(x+1)}$
Also, let $\frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}$
$\Rightarrow 1=A x(x+1)+B(x+1)+C\left(x^{2}\right)$
$\Rightarrow 1=A x^{2}+A x+B x+B+C x^{2}$
Equating the coefficients of x^{2}, x, and constant term, we obtain
$A+C=0 \quad A+B=0 \quad B=1$
On solving these equations, we obtain
$A=1, C=1$, and $B=1$
$\therefore \frac{1}{x^{2}(x+1)}=\frac{-1}{x}+\frac{1}{x^{2}}+\frac{1}{(x+1)}$
$\Rightarrow I=\int\left\{-\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{(x+1)}\right\} d x$
$=\left[-\log x-\frac{1}{x}+\log (x+1)\right]_{1}^{3}$
$=\left[\log \left(\frac{x+1}{x}\right)-\frac{1}{x}\right]_{1}^{3}$
$=\log \left(\frac{4}{3}\right)-\frac{1}{3}-\log \left(\frac{2}{1}\right)+1$
$=\log 4-\log 3-\log 2+\frac{2}{3}$
$=\log 2-\log 3+\frac{2}{3}$
$=\log \left(\frac{2}{3}\right)+\frac{2}{3}$
Hence, the given result is Proved

Q 35:

$\int_{0}^{1} x e^{x} d x=1$
Answer
Let $I=\int_{0}^{1} x e^{x} d x$
Integrat ng by parts, we obta n

$$
\begin{aligned}
I & =x \int_{0}^{1} e^{x} d x-\int_{0}^{1}\left\{\left(\frac{d}{d x}(x)\right) \int e^{x} d x\right\} d x \\
& =\left[x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x \\
& =\left[x e^{x}\right]_{0}^{1}-\left[e^{x}\right]_{0}^{1} \\
& =e-e+1 \\
& =1
\end{aligned}
$$

Hence, the given result is proved.

Q 36:
$\int_{-1}^{1} x^{17} \cos ^{4} x d x=0$
Answer:
Let $I=\int_{-1}^{1} x^{17} \cos ^{4} x d x$
Also, let $f(x)=x^{17} \cos ^{4} x$
$\Rightarrow f(-x)=(-x)^{17} \cos ^{4}(-x)=-x^{17} \cos ^{4} x=-f(x)$
Therefore, $f(x)$ is an odd function.
It is known that if $f(x)$ is an odd function, then $\int_{-a}^{a} f(x) d x=0$
$\therefore I=\int_{-1}^{1} x^{17} \cos ^{4} x d x=0$
Hence, the given result is proved.

Q 37:
$\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x=\frac{2}{3}$
Answer:
Let $I=\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x$
$I=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cdot \sin x d x$
$=\int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2} x\right) \sin x d x$
$=\int_{0}^{\frac{\pi}{2}} \sin x d x-\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \cdot \sin x d x$
$=[-\cos x]_{0}^{\frac{\pi}{2}}+\left[\frac{\cos ^{3} x}{3}\right]_{0}^{\frac{\pi}{2}}$
$=1+\frac{1}{3}[-1]=1-\frac{1}{3}=\frac{2}{3}$

Hence, the given result is proved.

Q 38:

$$
\int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x=1-\log 2
$$

Answer:

$$
\begin{aligned}
& \text { Let } I=\int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x \\
& \begin{aligned}
& I=2 \int_{0}^{\frac{\pi}{4}} \tan ^{2} x \tan x d x=2 \int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) \tan x d x \\
&=2 \int_{0}^{\frac{\pi}{4}} \sec ^{2} x \tan x d x-2 \int_{0}^{\frac{\pi}{4}} \tan x d x \\
&=2\left[\frac{\tan ^{2} x}{2}\right]_{0}^{\frac{\pi}{4}}+2[\log \cos x]_{0}^{\frac{\pi}{4}} \\
&=1+2\left[\log \cos \frac{\pi}{4}-\log \cos 0\right] \\
&=1+2\left[\log \frac{1}{\sqrt{2}}-\log 1\right] \\
&=1-\log 2-\log 1=1-\log 2
\end{aligned}
\end{aligned}
$$

Hence, the given result is proved.

Q 39:

$$
\int_{0}^{1} \sin ^{-1} x d x=\frac{\pi}{2}-1
$$

Answer:
Let $I=\int_{0}^{1} \sin ^{-1} x d x$
$\Rightarrow I=\int_{0}^{1} \sin ^{-1} x \cdot 1 \cdot d x$
Integrating by parts, we obtain

$$
\begin{aligned}
I & =\left[\sin ^{-1} x \cdot x\right]_{0}^{1}-\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} \cdot x d x \\
& =\left[x \sin ^{-1} x\right]_{0}^{1}+\frac{1}{2} \int_{0}^{\left(\frac{(-2 x)}{\sqrt{1-x^{2}}} d x\right.}
\end{aligned}
$$

Let $1-x^{2}=t \square-2 x d x=d t$
When $x=0, t=1$ and when $x=1, t=0$

$$
\begin{aligned}
I & =\left[x \sin ^{-1} x\right]_{0}^{1}+\frac{1}{2} \int^{0} \frac{d t}{\sqrt{t}} \\
& =\left[x \sin ^{-1} x\right]_{0}^{1}+\frac{1}{2}[2 \sqrt{t}]_{1}^{0} \\
& =\sin ^{-1}(1)+[-\sqrt{1}] \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

Hence, the given result is proved.

Q 40:

Evaluate $\int_{0}^{1} e^{2-3 x} d x$ as a limit of a sum.
Answer:
Let $I=\int_{0}^{1} e^{2-3 x} d x$
It is known that,

$$
\int_{0}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h)]
$$

Where, $h=\frac{b-a}{n}$
Here, $a=0, b=1$, and $f(x)=e^{2-3 x}$
$\Rightarrow h=\frac{1-0}{n}=\frac{1}{n}$

$$
\begin{aligned}
\therefore \int_{0}^{1} e^{2-3 x} d x & =(1-0) \lim _{n \rightarrow \infty} \frac{1}{n}[f(0)+f(0+h)+\ldots+f(0+(n-1) h)] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}+e^{2-3 h}+\ldots e^{2-3(n-1) h}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{1+e^{-3 h}+e^{-6 h}+e^{-9 h}+\ldots e^{-3(n-1) h}\right\}\right] \\
& =\lim _{h \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{\frac{1-\left(e^{-3 h}\right)^{n}}{1-\left(e^{-3 h}\right)}\right\}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{\frac{1-e^{-\frac{3}{n} \times n}}{1-e^{-\frac{3}{n}}}\right\}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{e^{2}\left(1-e^{-3}\right)}{1-e^{-\frac{3}{n}}}\right] \\
& =e^{2}\left(e^{-3}-1\right) \lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{e^{-\frac{3}{n}}-1}\right] \\
& =e^{2}\left(e^{-3}-1\right) \lim _{n \rightarrow \infty}\left(-\frac{1}{3}\right)\left[\frac{-\frac{3}{n}}{e^{-\frac{3}{n}}-1}\right] \\
& =\frac{-e^{2}\left(e^{-3}-1\right)}{3}\left[\lim _{n \rightarrow \infty}\left[\frac{-\frac{3}{n}}{e^{-\frac{3}{n}}}-1\right]\right. \\
& =\frac{-e^{2}\left(e^{-3}-1\right)}{3}(1) \\
& =\frac{-e^{-1}+e^{2}}{3} \\
& =\frac{1}{3}\left(e^{2}-\frac{1}{e}\right) \\
& \left.\lim _{n \rightarrow \infty} \frac{x}{e^{x}-1}\right]
\end{aligned}
$$

Q 41:

$\int \frac{d x}{e^{x}+e^{-x}}$ is equal to
A. $\tan ^{-1}\left(e^{x}\right)+\mathrm{C}$
B. $\tan ^{-1}\left(e^{-x}\right)+\mathrm{C}$
C. $\log \left(e^{x}-e^{-x}\right)+\mathrm{C}$
D. $\log \left(e^{x}+e^{-x}\right)+\mathrm{C}$

Answer
Let $I=\int \frac{d x}{e^{x}+e^{-x}} d x=\int \frac{e^{x}}{e^{2 x}+1} d x$
Also, let $e^{x}=t \Rightarrow e^{x} d x=d t$

$$
\begin{aligned}
\therefore I & =\int \frac{d t}{1+t^{2}} \\
& =\tan ^{-1} t+\mathrm{C} \\
& =\tan ^{-1}\left(e^{x}\right)+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is A.

Q 42:
$\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$ is equal to
A. $\frac{-1}{\sin x+\cos x}+C$
B. $\log |\sin x+\cos x|+C$
C. $\log |\sin x-\cos x|+C$
D. $\frac{1}{(\sin x+\cos x)^{2}}$

Answer:

$$
\begin{aligned}
& \text { Let } I=\frac{\cos 2 x}{(\cos x+\sin x)^{2}} \\
& \begin{aligned}
I & =\int \frac{\cos ^{2} x-\sin ^{2} x}{(\cos x+\sin x)^{2}} d x \\
& =\int \frac{(\cos x+\sin x)(\cos x-\sin x)}{(\cos x+\sin x)^{2}} d x \\
& =\int \frac{\cos x-\sin x}{\cos +\sin x} d x
\end{aligned}
\end{aligned}
$$

Let $\cos x+\sin x=t \Rightarrow(\cos x-\sin x) d x=d t$

$$
\begin{aligned}
\therefore I & =\int \frac{d t}{t} \\
& =\log |t|+C \\
& =\log |\cos x+\sin x|+C
\end{aligned}
$$

Hence, the correct Answer is B.

Q 43:

If $f(a+b-x)=f(x)$, then $\int_{a}^{b} x f(x) d x$ is equal to $\frac{a+b}{2} \int_{a}^{b} f(b-x) d x$
B. $\frac{a+b}{2} \int_{a}^{b} f(b+x) d x$
C. $\frac{b-a}{2} \int_{a}^{b} f(x) d x$
D. $\frac{a+b}{2} \int_{a}^{b} f(x) d x$

Answer:
Let $I=\int_{a}^{b} x f(x) d x$

$$
\begin{aligned}
& I=\int_{a}^{b}(a+b-x) f(a+b-x) d x \\
& \Rightarrow I=\int_{a}^{b}(a+b-x) f(x) d x \\
& \Rightarrow I=(a+b) \int_{a}^{b} f(x) d x \quad-I \\
& \Rightarrow I+I=(a+b) \int_{a}^{b} f(x) d x \\
& \left.\Rightarrow 2 I=(a+b) \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right) \\
& \Rightarrow I=\left(\frac{a+b}{2}\right) \int_{a}^{b} f(x) d x
\end{aligned}
$$

Hence, the correct Answer is D.

Q 44:

The value of $\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x$ is
A. 1
B. 0
C. 1
D. $\frac{\pi}{4}$

Answer:
Let $I=\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x$
$\Rightarrow I=\int_{0}^{1} \tan ^{-1}\left(\frac{x-(1-x)}{1+x(1-x)}\right) d x$
$\Rightarrow I=\int_{0}^{4}\left[\tan ^{-1} x-\tan ^{-1}(1-x)\right] d x$
$\Rightarrow I=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(1-1+x)\right] d x$
$\Rightarrow I=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(x)\right] d x$
$\Rightarrow I=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(x)\right] d x$
Addng (1) and (2), we obta n
$2 I=\int_{0}^{1}\left(\tan ^{-1} x+\tan ^{-1}(1-x)-\tan ^{-1}(1-x)-\tan ^{-1} x\right) d x$
$\Rightarrow 2 I=0$
$\Rightarrow I=0$
Hence, the correct Answer is B.
is sure

