Class 12 Maths NCERT Solutions Chapter - 2

InverseTrigonometric Functions Exercise 2.1

Q 1:

Find the principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)$
Answer :
Let $\sin ^{-1}\left(-\frac{1}{2}\right)=y$. Then $\sin y=-\frac{1}{2}=-\sin \left(\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\sin ^{-1}$ is
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$.
Therefore, the principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.

Q 2:

Find the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
Answer:
Let $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=y$. Then, $\cos y=\frac{\sqrt{3}}{2}=\cos \left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is
$[0, \pi]$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.
Therefore, the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$

Q 3:

Find the principal value of $\operatorname{cosec}^{-1}(2)$
Answer:
Let $\operatorname{cosec}^{-1}(2)=y$. Then, $\operatorname{cosec} y=2=\operatorname{cosec}\left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$.
Therefore, the principal value of $\operatorname{cosec}^{-1}(2)$ is $\frac{\pi}{6}$.

Q4:

Find the principal value of $\tan ^{-1}(-\sqrt{3})$
Answer:
Let $\tan ^{-1}(-\sqrt{3})=y$. Then, $\tan y=-\sqrt{3}=-\tan \frac{\pi}{3}=\tan \left(-\frac{\pi}{3}\right)$.
We know that the range of the principal value branch of $\tan ^{-1}$ is
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan \left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$.
Therefore, the principal value of $\tan ^{-1}(\sqrt{3})$ is $-\frac{\pi}{3}$.

Q 5:
Find the principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$
Answer:
Let $\cos ^{-1}\left(-\frac{1}{2}\right)=y$. Then, $\cos y=-\frac{1}{2}=-\cos \left(\frac{\pi}{3}\right)=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is
$[0, \pi]$ and $\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$.
Therefore, the principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2 \pi}{3}$.

Q 6:

Find the principal value of $\tan ^{-1}(-1)$
Answer:
Let $\tan ^{-1}(-1)=y$. Then, $\tan y=-1=-\tan \left(\frac{\pi}{4}\right)=\tan \left(-\frac{\pi}{4}\right)$.
We know that the range of the principal value branch of $\tan ^{-1}$ is
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan \left(-\frac{\pi}{4}\right)=-1$.
Therefore, the principal value of $\tan ^{-1}(-1)$ is $-\frac{\pi}{4}$.

Q 7:

Find the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
Answer:
Let $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=y$. Then, $\sec y=\frac{2}{\sqrt{3}}=\sec \left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of sec^{-1} is
$[0, \pi]-\left\{\frac{\pi}{2}\right\}$ and $\sec \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}}$.
Therefore, the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

Q 8:

Find the principal value of $\cot ^{-1}(\sqrt{3})$
Answer:
Let $\cot ^{-1}(\sqrt{3})=y$. Then, $\cot y=\sqrt{3}=\cot \left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of $\cot ^{-1}$ is $(0, \pi)$ and $\cot \left(\frac{\pi}{6}\right)=\sqrt{3}$.

Therefore, the principal value of $\cot ^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.

Q 9:

Find the principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
Answer:
Let $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=y$. Then, $\cos y=-\frac{1}{\sqrt{2}}=-\cos \left(\frac{\pi}{4}\right)=\cos \left(\pi-\frac{\pi}{4}\right)=\cos \left(\frac{3 \pi}{4}\right)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$.
Therefore, the principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3 \pi}{4}$.

Q 10:

Find the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$
Answer:
Let $\operatorname{cosec}^{-1}(-\sqrt{2})=y$. Then, $\operatorname{cosec} y=-\sqrt{2}=-\operatorname{cosec}\left(\frac{\pi}{4}\right)=\operatorname{cosec}\left(-\frac{\pi}{4}\right)$.
We know that the range of the principal value branch of cosec ${ }^{-1}$ is
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$ and $\operatorname{cosec}\left(-\frac{\pi}{4}\right)=-\sqrt{2}$.
Therefore, the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.

Q 11:

Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$

Answer:

Let $\tan ^{-1}(1)=x$. Then, $\tan x=1=\tan \frac{\pi}{4}$.
$\therefore \tan ^{-1}(1)=\frac{\pi}{4}$
Let $\cos ^{-1}\left(-\frac{1}{2}\right)=y$. Then, $\cos y=-\frac{1}{2}=-\cos \left(\frac{\pi}{3}\right)=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right)$.
$\therefore \cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$
Let $\sin ^{-1}\left(-\frac{1}{2}\right)=z$. Then, $\sin z=-\frac{1}{2}=-\sin \left(\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right)$.
$\therefore \sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}$
$\therefore \tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$
$=\frac{\pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{6}$
$=\frac{3 \pi+8 \pi-2 \pi}{12}=\frac{9 \pi}{12}=\frac{3 \pi}{4}$

Q 12:
Find the value of $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$
Answer:

Let $\cos ^{-1}\left(\frac{1}{2}\right)=x$. Then, $\cos x=\frac{1}{2}=\cos \left(\frac{\pi}{3}\right)$.
$\therefore \cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
Let $\sin ^{-1}\left(\frac{1}{2}\right)=y$. Then, $\sin y=\frac{1}{2}=\sin \left(\frac{\pi}{6}\right)$.
$\therefore \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
$\therefore \cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}+\frac{2 \pi}{6}=\frac{\pi}{3}+\frac{\pi}{3}=\frac{2 \pi}{3}$

Q 13:

Find the value of if $\sin ^{-1} x=y$, then
(A) $0 \leq y \leq \pi$
(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) $0<y<\pi$
D) $-\frac{\pi}{2}<y<\frac{\pi}{2}$

Answer:
It is given that $\sin ^{-1} x=y$.
We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Find the value of $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)$ is equal to
(A) π
(B) $(-\pi) / 3$
(C) $\pi / 3$
(D) $2 \pi / 3$

Answer:
Let $\tan ^{-1} \sqrt{3}=x$. Then, $\tan x=\sqrt{3}=\tan \frac{\pi}{3}$.
We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
$\therefore \tan ^{-1} \sqrt{3}=\frac{\pi}{3}$
Let $\sec ^{-1}(-2)=y$. Then, $\sec y=-2=-\sec \left(\frac{\pi}{3}\right)=\sec \left(\pi-\frac{\pi}{3}\right)=\sec \frac{2 \pi}{3}$.
We know that the range of the principal value branch of $\sec ^{-1}$ is $[0, \pi]-\left\{\frac{\pi}{2}\right\}$.
$\therefore \sec ^{-1}(-2)=\frac{2 \pi}{3}$

Hence, $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)=\frac{\pi}{3}-\frac{2 \pi}{3}=-\frac{\pi}{3}$

Exercise 2.2

Q 1:

Prove $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
Answer:
To prove: $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right)$, $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
Let $x=\sin \theta$. Then, $\sin ^{-1} x=\theta$.
We have,
R.H.S. $=\sin ^{-1}\left(3 x-4 x^{3}\right)=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)$
$=\sin ^{-1}(\sin 3 \theta)$
$=3 \theta$
$=3 \sin ^{-1} x$
= L.H.S.

Q 2:

Prove $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$
Answer:
To prove: $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$
Let $x=\cos \theta$. Then, $\cos ^{-1} x=\theta$.
We have,

$$
\begin{aligned}
\text { R.H.S. } & =\cos ^{-1}\left(4 x^{3}-3 x\right) \\
& =\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right) \\
& =\cos ^{-1}(\cos 3 \theta) \\
& =3 \theta \\
& =3 \cos ^{-1} x \\
& =\text { L.H.S. }
\end{aligned}
$$

Q 3:

Prove $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$
Answer:
To prove: $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$
L.H.S. $=\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}$

$$
\begin{aligned}
& =\tan ^{-1} \frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \cdot \frac{7}{24}} \\
& =\tan ^{-1} \frac{\frac{48+77}{11 \times 24}}{\frac{11 \times 24-14}{11 \times 24}} \\
& \left.=\tan ^{-1} \frac{48+77}{264-14}=\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& 250
\end{aligned}=\tan ^{-1} \frac{1}{2}=\text { R.H.S. } . ~ \$
$$

Q 4:

Prove $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$
Answer:
To prove: $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$
L.H.S. $=2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}$

$$
=\tan ^{-1} \frac{2 \cdot \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}+\tan ^{-1} \frac{1}{7} \quad\left[2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right]
$$

$$
=\tan ^{-1} \frac{1}{\left(\frac{3}{4}\right)}+\tan ^{-1} \frac{1}{7}
$$

$$
=\tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{1}{7}
$$

$$
=\tan ^{-1} \frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \cdot \frac{1}{7}} \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]
$$

$$
=\tan ^{-1} \frac{\left(\frac{28+3}{21}\right)}{\left(\frac{21-4}{21}\right)}
$$

$$
=\tan ^{-1} \frac{31}{17}=\text { R.H.S. }
$$

Q 5:

Write the function in the simplest form:
$\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0$
Answer:
$\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}$
Put $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$
$\therefore \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)$
$=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)$
$=\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right)$
$=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} x$

Q 6:

Write the function in the simplest form:

$$
\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x|>1
$$

Answer:

$$
\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x|>1
$$

Put $x=\operatorname{cosec} \theta \Rightarrow \theta=\operatorname{cosec}^{-1} x$
$\therefore \tan ^{-1} \frac{1}{\sqrt{x^{2}-1}}=\tan ^{-1} \frac{1}{\sqrt{\operatorname{cosec}^{2} \theta-1}}$
$=\tan ^{-1}\left(\frac{1}{\cot \theta}\right)=\tan ^{-1}(\tan \theta)$
$=\theta=\operatorname{cosec}^{-1} x=\frac{\pi}{2}-\sec ^{-1} x$
$\left[\operatorname{cosec}^{-1} x+\sec ^{-1} x=\frac{\pi}{2}\right]$

Q 7:

Write the function in the simplest form:
$\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), x<\pi$
Answer
$\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), x<\pi$
$\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\tan ^{-1}\left(\sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right)$
$=\tan ^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)=\tan ^{-1}\left(\tan \frac{x}{2}\right)$
$=\frac{x}{2}$

Q 8:

Write the function in the simplest form:
$\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\pi$
Answer:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right) \\
& =\tan ^{-1}\left(\frac{1-\frac{\sin x}{\cos x}}{1+\frac{\sin x}{\cos x}}\right) \\
& =\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right) \\
& =\tan ^{-1}(1)-\tan ^{-1}(\tan x) \quad\left[\tan ^{-1} \frac{x-y}{1-x y}=\tan ^{-1} x-\tan ^{-1} y\right] \\
& =\frac{\pi}{4}-x
\end{aligned}
$$

Q 9:

Write the function in the simplest form:

$$
\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x|<a
$$

Answer:

$$
\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}
$$

Put $x=a \sin \theta \Rightarrow \frac{x}{a}=\sin \theta \Rightarrow \theta=\sin ^{-1}\left(\frac{x}{a}\right)$
$\therefore \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right)$
$=\tan ^{-1}\left(\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right)=\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right)$
$=\tan ^{-1}(\tan \theta)=\theta=\sin ^{-1} \frac{x}{a}$

Q 10:

Write the function in the simplest form:

$$
\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}} \leq x \leq \frac{a}{\sqrt{3}}
$$

Answer:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right) \\
& \text { Put } x=a \tan \theta \Rightarrow \frac{x}{a}=\tan \theta \Rightarrow \theta=\tan ^{-1} \frac{x}{a} \\
& \tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)=\tan ^{-1}\left(\frac{3 a^{2} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}\left(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}\right) \\
& =\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\
& =\tan ^{-1}(\tan 3 \theta) \\
& =3 \theta \\
& =3 \tan ^{-1} \frac{x}{a}
\end{aligned}
$$

Q 11:

Find the value of $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$

Answer:
Let $\sin x=\frac{1}{2}=\sin \left(\frac{\pi}{6}\right)$. Then,
$\therefore \sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$
$\therefore \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]$
$=\tan ^{-1}\left[2 \cos \frac{\pi}{3}\right]=\tan ^{-1}\left[2 \times \frac{1}{2}\right]$
$=\tan ^{-1} 1=\frac{\pi}{4}$

Q 12:

Find the value of $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$
Answer:

$$
\begin{aligned}
& \cot \left(\tan ^{-1} a+\cot ^{-1} a\right) \\
& =\cot \left(\frac{\pi}{2}\right) \quad\left[\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right] \\
& =0
\end{aligned}
$$

Q 13:

Find the value of $\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right],|x|<1, y>0$ and $x y<1$

Answer:

Let $x=\tan \theta$. Then, $\theta=\tan ^{-1} x$.

$$
\therefore \sin ^{-1} \frac{2 x}{1+x^{2}}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\sin ^{-1}(\sin 2 \theta)=2 \theta=2 \tan ^{-1} x
$$

Let $y=\tan \Phi$. Then, $\Phi=\tan ^{-1} y$.

$$
\begin{aligned}
& \therefore \cos ^{-1} \frac{1-y^{2}}{1+y^{2}}=\cos ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right)=\cos ^{-1}(\cos 2 \phi)=2 \phi=2 \tan ^{-1} y \\
& \therefore \tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right] \\
& =\tan \frac{1}{2}\left[2 \tan ^{-1} x+2 \tan ^{-1} y\right] \\
& =\tan \left[\tan ^{-1} x+\tan ^{-1} y\right] \\
& =\tan \left[\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right] \\
& =\frac{x+y}{1-x y}
\end{aligned}
$$

Q 14:

If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$ then find the value of x.
Answer:
$\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$
$\Rightarrow \sin \left(\sin ^{-1} \frac{1}{5}\right) \cos \left(\cos ^{-1} x\right)+\cos \left(\sin ^{-1} \frac{1}{5}\right) \sin \left(\cos ^{-1} x\right)=1$
$[\sin (A+B)=\sin A \cos B+\cos A \sin B]$
$\Rightarrow \frac{1}{5} \times x+\cos \left(\sin ^{-1} \frac{1}{5}\right) \sin \left(\cos ^{-1} x\right)=1$
$\Rightarrow \frac{x}{5}+\cos \left(\sin ^{-1} \frac{1}{5}\right) \sin \left(\cos ^{-1} x\right)=1$.
Now, let $\sin ^{-1} \frac{1}{5}=y$.
Then, $\sin y=\frac{1}{5} \Rightarrow \cos y=\sqrt{1-\left(\frac{1}{5}\right)^{2}}=\frac{2 \sqrt{6}}{5} \Rightarrow y=\cos ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)$.
$\therefore \sin ^{-1} \frac{1}{5}=\cos ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)$
Let $\cos ^{-1} x=z$.
Then, $\cos z=x \Rightarrow \sin z=\sqrt{1-x^{2}} \Rightarrow z=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)$.
$\therefore \cos ^{-1} x=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)$
From (1), (2), and (3) we have:
$\frac{x}{5}+\cos \left(\cos ^{-1} \frac{2 \sqrt{6}}{5}\right) \cdot \sin \left(\sin ^{-1} \sqrt{1-x^{2}}\right)=1$
$\Rightarrow \frac{x}{5}+\frac{2 \sqrt{6}}{5} \cdot \sqrt{1-x^{2}}=1$
$\Rightarrow x+2 \sqrt{6} \sqrt{1-x^{2}}=5$
$\Rightarrow 2 \sqrt{6} \sqrt{1-x^{2}}=5-x$

On squaring both sides, we get:
(4)(6) $\left(1-x^{2}\right)=25+x^{2}-10 x$
$\Rightarrow 24-24 x^{2}=25+x^{2}-10 x$
$\Rightarrow 25 x^{2}-10 x+1=0$
$\Rightarrow(5 x-1)^{2}=0$
$\Rightarrow(5 x-1)=0$
$\Rightarrow x=\frac{1}{5}$

Hence, the value of x is $\frac{1}{5}$.

Q 15:

If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1 \pi}{x+2}=\frac{-}{4}$ then find the value of x.
Answer:
$\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left[\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right)}\right]=\frac{\pi}{4}$

$$
\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]
$$

$\Rightarrow \tan ^{-1}\left[\frac{(x-1)(x+2)+(x+1)(x-2)}{(x+2)(x-2)-(x-1)(x+1)}\right]=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left[\frac{x^{2}+x-2+x^{2}-x-2}{x^{2}-4-x^{2}+1}\right]=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left[\frac{2 x^{2}-4}{-3}\right]=\frac{\pi}{4}$
$\Rightarrow \tan \left[\tan ^{-1} \frac{4-2 x^{2}}{3}\right]=\tan \frac{\pi}{4}$
$\Rightarrow \frac{4-2 x^{2}}{3}=1$
$\Rightarrow 4-2 x^{2}=3$
$\Rightarrow 2 x^{2}=4-3=1$
$\Rightarrow x= \pm \frac{1}{\sqrt{2}}$
Hence, the value of x is $\pm 1 /(\sqrt{ } 2)$

Q 16:

Find the values of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
Answer:
$\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
We know that $\sin ^{-1}(\sin x)=x$ if $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which is the principal value branch of $\sin ^{-1} x$.
Here, $\frac{2 \pi}{3} \notin\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Now, $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$ can be written as:
$\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1}\left[\sin \left(\pi-\frac{2 \pi}{3}\right)\right]=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)$ where $\frac{\pi}{3} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$\therefore \sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}$

Q 17:

Find the values of $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
Answer:
$\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$

We know that $\tan ^{-1}(\tan x)=x$ if $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan ^{-1} x$.
Here, $\frac{3 \pi}{4} \notin\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
Now, $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ can be written as:
$\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left[-\tan \left(\frac{-3 \pi}{4}\right)\right]=\tan ^{-1}\left[-\tan \left(\pi-\frac{\pi}{4}\right)\right]$
$=\tan ^{-1}\left[-\tan \frac{\pi}{4}\right]=\tan ^{-1}\left[\tan \left(-\frac{\pi}{4}\right)\right]$ where $-\frac{\pi}{4} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
$\therefore \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left[\tan \left(\frac{-\pi}{4}\right)\right]=\frac{-\pi}{4}$

Q 18:

Find the values of $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$
Answer:
Let $\sin ^{-1} \frac{3}{5}=x$. Then, $\sin x=\frac{3}{5} \Rightarrow \cos x=\sqrt{1-\sin ^{2} x}=\frac{4}{5} \Rightarrow \sec x=\frac{5}{4}$.
$\therefore \tan x=\sqrt{\sec ^{2} x-1}=\sqrt{\frac{25}{16}-1}=\frac{3}{4}$
$\therefore x=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, $\cot ^{-1} \frac{3}{2}=\tan ^{-1} \frac{2}{3}$
...(ii) $\quad\left[\tan ^{-1} \frac{1}{x}=\cot ^{-1} x\right]$
Hence, $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$
$=\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)$
[Using (i) and (ii)]
$=\tan \left(\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}\right)$
$\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]$
$=\tan \left(\tan ^{-1} \frac{9+8}{12-6}\right)$
$=\tan \left(\tan ^{-1} \frac{17}{6}\right)=\frac{17}{6}$

Q 19:

Find the values of $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is equal to
(A) $\frac{7 \pi}{6}$
(B) $\frac{5 \pi}{6}$
C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

Answer:
We know that $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi]$, which is the principal value branch of $\cos ^{-1} x$.

Here, $\frac{7 \pi}{6} \notin x \in[0, \pi]$.
Now, $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ can be written as:
$\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\cos \frac{-7 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(2 \pi-\frac{7 \pi}{6}\right)\right] \quad[\cos (2 \pi+x)=\cos x]$
$=\cos ^{-1}\left[\cos \frac{5 \pi}{6}\right]$ where $\frac{5 \pi}{6} \in[0, \pi]$
$\therefore \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right)=\frac{5 \pi}{6}$
The correct answer is B.

Q 20:

Find the values of $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) 1

Answer:
Let $\sin ^{-1}\left(\frac{-1}{2}\right)=x$. Then, $\sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin \left(\frac{-\pi}{6}\right)$.
We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$\therefore \sin ^{-1}\left(\frac{-1}{2}\right)=\frac{-\pi}{6}$
$\therefore \sin \left(\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right)=\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin \left(\frac{3 \pi}{6}\right)=\sin \left(\frac{\pi}{2}\right)=1$
The correct answer is D.

Miscellaneous Solutions

Q 1:

Find the value of $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$

Answer:

We know that $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi]$, which is the principal value branch of $\cos ^{-1} x$.

Here, $\frac{13 \pi}{6} \notin[0, \pi]$.
Now, $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$ can be written as:
$\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(2 \pi+\frac{\pi}{6}\right)\right]=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right]$, where $\frac{\pi}{6} \in[0, \pi]$.
$\therefore \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left[\cos \left(\frac{\pi}{6}\right)\right]=\frac{\pi}{6}$

Q 2:

Find the value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$
Answer:
We know that $\tan ^{-1}(\tan x)=x$ if $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which is the principal value branch of $\tan ^{-1} x$.

Here, $\frac{7 \pi}{6} \notin\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Now, $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ can be written as:

$$
\begin{aligned}
& \tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left[\tan \left(2 \pi-\frac{5 \pi}{6}\right)\right] \quad[\tan (2 \pi-x)=-\tan x] \\
& =\tan ^{-1}\left[-\tan \left(\frac{5 \pi}{6}\right)\right]=\tan ^{-1}\left[\tan \left(-\frac{5 \pi}{6}\right)\right]=\tan ^{-1}\left[\tan \left(\pi-\frac{5 \pi}{6}\right)\right] \\
& =\tan ^{-1}\left[\tan \left(\frac{\pi}{6}\right)\right], \text { where } \frac{\pi}{6} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
& \therefore \tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left(\tan \frac{\pi}{6}\right)=\frac{\pi}{6}
\end{aligned}
$$

Q 3:

Prove $2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}$

Answer:
Let $\sin ^{-1} \frac{3}{5}=x$. Then, $\sin x=\frac{3}{5}$.
$\Rightarrow \cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}$
$\therefore \tan x=\frac{3}{4}$
$\therefore x=\tan ^{-1} \frac{3}{4} \Rightarrow \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, we have:
L.H.S. $=2 \sin ^{-1} \frac{3}{5}=2 \tan ^{-1} \frac{3}{4}$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right) \quad\left[2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right] \\
& =\tan ^{-1}\left(\frac{\frac{3}{2}}{\frac{16-9}{16}}\right)=\tan ^{-1}\left(\frac{3}{2} \times \frac{16}{7}\right) \\
& =\tan ^{-1} \frac{24}{7}=\text { R.H.S. }
\end{aligned}
$$

Q 4:

Prove $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}$

Answer:

Let $\sin ^{-1} \frac{8}{17}=x$. Then, $\sin x=\frac{8}{17} \Rightarrow \cos x=\sqrt{1-\left(\frac{8}{17}\right)^{2}}=\sqrt{\frac{225}{289}}=\frac{15}{17}$.
$\therefore \tan x=\frac{8}{15} \Rightarrow x=\tan ^{-1} \frac{8}{15}$
$\therefore \sin ^{-1} \frac{8}{17}=\tan ^{-1} \frac{8}{15}$
Now, let $\sin ^{-1} \frac{3}{5}=y$. Then, $\sin y=\frac{3}{5} \Rightarrow \cos y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$.
$\therefore \tan y=\frac{3}{4} \Rightarrow y=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, we have:

$$
\begin{aligned}
\text { L.H.S. } & =\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5} \\
& =\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{3}{4} \\
& =\tan ^{-1} \frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \times \frac{3}{4}} \\
& \quad \text { [Using (1) and }(2)] \\
& =\tan ^{-1}\left(\frac{32+45}{60-24}\right) \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1} \frac{77}{36}=\text { R.H.S. } \quad
\end{aligned}
$$

Q 5:

Prove $\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$
Answer:
Let $\cos ^{-1} \frac{4}{5}=x$. Then, $\cos x=\frac{4}{5} \Rightarrow \sin x=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\frac{3}{5}$.
$\therefore \tan x=\frac{3}{4} \Rightarrow x=\tan ^{-1} \frac{3}{4}$
$\therefore \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4}$
Now, let $\cos ^{-1} \frac{12}{13}=y$. Then, $\cos y=\frac{12}{13} \Rightarrow \sin y=\frac{5}{13}$.
$\therefore \tan y=\frac{5}{12} \Rightarrow y=\tan ^{-1} \frac{5}{12}$
$\therefore \cos ^{-1} \frac{12}{13}=\tan ^{-1} \frac{5}{12}$
Let $\cos ^{-1} \frac{33}{65}=z$. Then, $\cos z=\frac{33}{65} \Rightarrow \sin z=\frac{56}{65}$.
$\therefore \tan z=\frac{56}{33} \Rightarrow z=\tan ^{-1} \frac{56}{33}$
$\therefore \cos ^{-1} \frac{33}{65}=\tan ^{-1} \frac{56}{33}$
Now, we will prove that:

$$
\begin{array}{rlr}
\text { L.H.S. } & =\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13} & \\
& =\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12} & {[\text { Using (1) and (2) }]} \\
& =\tan ^{-1} \frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \cdot \frac{5}{12}} & {\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]} \\
& =\tan ^{-1} \frac{36+20}{48-15} & \\
& =\tan ^{-1} \frac{56}{33} & \\
& =\tan ^{-1} \frac{56}{33} & \tag{3}\\
& =\text { R.H.S. } &
\end{array}
$$

Q 6:

Prove $\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$

Answer:

Let $\sin ^{-1} \frac{3}{5}=x$. Then, $\sin x=\frac{3}{5} \Rightarrow \cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$.
$\therefore \tan x=\frac{3}{4} \Rightarrow x=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, let $\cos ^{-1} \frac{12}{13}=y$. Then, $\cos y=\frac{12}{13} \Rightarrow \sin y=\frac{5}{13}$.
$\therefore \tan y=\frac{5}{12} \Rightarrow y=\tan ^{-1} \frac{5}{12}$
$\therefore \cos ^{-1} \frac{12}{13}=\tan ^{-1} \frac{5}{12}$
Let $\sin ^{-1} \frac{56}{65}=z$. Then, $\sin z=\frac{56}{65} \Rightarrow \cos z=\frac{33}{65}$.
$\therefore \tan z=\frac{56}{33} \Rightarrow z=\tan ^{-1} \frac{56}{33}$
$\therefore \sin ^{-1} \frac{56}{65}=\tan ^{-1} \frac{56}{33}$
Now, we have:
L.H.S. $=\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}$

$$
\begin{aligned}
& =\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{3}{4} \quad \quad[\text { Using }(1) \text { and }(2)] \\
& =\tan ^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-\frac{5}{12} \cdot \frac{3}{4}} \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1} \frac{20+36}{48-15} \\
& =\tan ^{-1} \frac{56}{33} \\
& =\sin ^{-1} \frac{56}{65}=\text { R.H.S. } \quad[\text { Using }(3)]
\end{aligned}
$$

Q 7:

Prove $\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}$

Answer:

Let $\sin ^{-1} \frac{5}{13}=x$. Then, $\sin x=\frac{5}{13} \Rightarrow \cos x=\frac{12}{13}$.
$\therefore \tan x=\frac{5}{12} \Rightarrow x=\tan ^{-1} \frac{5}{12}$
$\therefore \sin ^{-1} \frac{5}{13}=\tan ^{-1} \frac{5}{12}$
Let $\cos ^{-1} \frac{3}{5}=y$. Then, $\cos y=\frac{3}{5} \Rightarrow \sin y=\frac{4}{5}$.
$\therefore \tan y=\frac{4}{3} \Rightarrow y=\tan ^{-1} \frac{4}{3}$
$\therefore \cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{4}{3}$
Using (1) and (2), we have

$$
\begin{aligned}
\text { R.H.S. } & =\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5} \\
& =\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{4}{3} \\
& =\tan ^{-1}\left(\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \times \frac{4}{3}}\right) \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1}\left(\frac{15+48}{36-20}\right) \\
& =\tan ^{-1} \frac{63}{16} \\
& =\text { L.H.S. }
\end{aligned}
$$

Q 8:

Prove $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$
Answer:

$$
\left.\begin{array}{rl}
\text { L.H.S. } & =\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8} \\
& =\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{7}}{1-\frac{1}{5} \times \frac{1}{7}}\right)+\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{8}}{1-\frac{1}{3} \times \frac{1}{8}}\right) \quad\left[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \\
& =\tan ^{-1}\left(\frac{7+5}{35-1}\right)+\tan ^{-1}\left(\frac{8+3}{24-1}\right) \\
& =\tan ^{-1} \frac{12}{34}+\tan ^{-1} \frac{11}{23} \\
& =\tan ^{-1} \frac{6}{17}+\tan ^{-1} \frac{11}{23} \\
& =\tan ^{-1}\left(\frac{6}{17}+\frac{11}{23}\right. \\
1-\frac{6}{17} \times \frac{11}{23}
\end{array}\right) .
$$

Q 9:

Prove $\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in[0,1]$
Answer:
Let $x=\tan ^{2} \theta$. Then, $\sqrt{x}=\tan \theta \Rightarrow \theta=\tan ^{-1} \sqrt{x}$.
$\therefore \frac{1-x}{1+x}=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
Now, we have:
R.H.S. $=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \cos ^{-1}(\cos 2 \theta)=\frac{1}{2} \times 2 \theta=\theta=\tan ^{-1} \sqrt{x}=$ L.H.S.

Q 10:
Prove $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)$

Answer:

Consider $\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}$

$$
\begin{aligned}
& =\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x})^{2}-(\sqrt{1-\sin x})^{2}} \quad \text { (by rationalizing) } \\
& =\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x-1+\sin x} \\
& =\frac{2\left(1+\sqrt{1-\sin ^{2} x}\right)}{2 \sin x}=\frac{1+\cos x}{\sin x}=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \\
& =\cot \frac{x}{2}
\end{aligned}
$$

\therefore L.H.S. $=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\cot ^{-1}\left(\cot \frac{x}{2}\right)=\frac{x}{2}=$ R.H.S.

Q 11:

Prove $\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq 1 \quad$ [Hint: put $\left.x=\cos 2 \theta\right]$

Answer:

Put $x=\cos 2 \theta$ so that $\theta=\frac{1}{2} \cos ^{-1} x$. Then, we have:
L.H.S. $=\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right)=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right) \quad \quad\left[\tan ^{-1}\left(\frac{x-y}{1+x y}\right)=\tan ^{-1} x-\tan ^{-1} y\right] \\
& =\tan ^{-1} 1-\tan ^{-1}(\tan \theta) \quad
\end{aligned}
$$

$$
=\frac{\pi}{4}-\theta=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x=\text { R.H.S. }
$$

Q 12:
Prove $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$
Answer:
L.H.S. $=\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}$

$$
\begin{aligned}
& =\frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right) \\
& =\frac{9}{4}\left(\cos ^{-1} \frac{1}{3}\right) \quad \ldots . .(1)\left[\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right]
\end{aligned}
$$

Now, let $\cos ^{-1} \frac{1}{3}=x$. Then, $\cos x=\frac{1}{3} \Rightarrow \sin x=\sqrt{1-\left(\frac{1}{3}\right)^{2}}=\frac{2 \sqrt{2}}{3}$.
$\therefore x=\sin ^{-1} \frac{2 \sqrt{2}}{3} \Rightarrow \cos ^{-1} \frac{1}{3}=\sin ^{-1} \frac{2 \sqrt{2}}{3}$
\therefore L.H.S. $=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}=$ R.H.S.

Q 13:

Solve $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
Answer:

$$
\begin{aligned}
& 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) \\
& \Rightarrow \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}(2 \operatorname{cosec} x) \quad\left[2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\right] \\
& \Rightarrow \frac{2 \cos x}{1-\cos ^{2} x}=2 \operatorname{cosec} x \\
& \Rightarrow \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x} \\
& \Rightarrow \cos x=\sin x \\
& \Rightarrow \tan x=1 \\
& \therefore x=\frac{\pi}{4}
\end{aligned}
$$

Solve $\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x,(x>0)$
$\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x$
$\Rightarrow \tan ^{-1} 1-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x \quad\left[\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}\right]$
$\Rightarrow \frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x$
$\Rightarrow \tan ^{-1} x=\frac{\pi}{6}$
$\Rightarrow x=\tan \frac{\pi}{6}$
$\therefore x=\frac{1}{\sqrt{3}}$

Solve $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
(A) $\frac{x}{\sqrt{1-x^{2}}}$
(B) $\frac{1}{\sqrt{1-x^{2}}}$
(C) $\frac{1}{\sqrt{1+x^{2}}}$
(D) $\frac{x}{\sqrt{1+x^{2}}}$

Let $\tan ^{-1} x=y$. Then, $\tan y=x \Rightarrow \sin y=\frac{x}{\sqrt{1+x^{2}}}$.
$\therefore y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right) \Rightarrow \tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)$
$\therefore \sin \left(\tan ^{-1} x\right)=\sin \left(\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}\right)=\frac{x}{\sqrt{1+x^{2}}}$
The correct answer is D.

Answer:

$$
\begin{align*}
& \sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow-2 \sin ^{-1} x=\frac{\pi}{2}-\sin ^{-1}(1-x) \\
& \Rightarrow-2 \sin ^{-1} x=\cos ^{-1}(1-x) \tag{1}
\end{align*}
$$

Let $\sin ^{-1} x=\theta \Rightarrow \sin \theta=x \Rightarrow \cos \theta=\sqrt{1-x^{2}}$.
$\therefore \theta=\cos ^{-1}\left(\sqrt{1-x^{2}}\right)$
$\therefore \sin ^{-1} x=\cos ^{-1}\left(\sqrt{1-x^{2}}\right)$
Therefore, from equation (1), we have
$-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\cos ^{-1}(1-x)$
Put $x=\sin y$. Then, we have:

$$
\begin{aligned}
& -2 \cos ^{-1}\left(\sqrt{1-\sin ^{2} y}\right)=\cos ^{-1}(1-\sin y) \\
& \Rightarrow-2 \cos ^{-1}(\cos y)=\cos ^{-1}(1-\sin y) \\
& \Rightarrow-2 y=\cos ^{-1}(1-\sin y) \\
& \Rightarrow 1-\sin y=\cos (-2 y)=\cos 2 y \\
& \Rightarrow 1-\sin y=1-2 \sin ^{2} y \\
& \Rightarrow 2 \sin ^{2} y-\sin y=0 \\
& \Rightarrow \sin y(2 \sin y-1)=0 \\
& \Rightarrow \sin y=0 \text { or } \frac{1}{2} \\
& \therefore x=0 \text { or } x=\frac{1}{2}
\end{aligned}
$$

But, when $x=\frac{1}{2}$, it can be observed that:

$$
\begin{aligned}
\text { L.H.S. } & =\sin ^{-1}\left(1-\frac{1}{2}\right)-2 \sin ^{-1} \frac{1}{2} \\
& =\sin ^{-1}\left(\frac{1}{2}\right)-2 \sin ^{-1} \frac{1}{2} \\
& =-\sin ^{-1} \frac{1}{2} \\
& =-\frac{\pi}{6} \neq \frac{\pi}{2} \neq \text { R.H.S }
\end{aligned}
$$

is not the solution of the given equation.
Thus, $x=0$.
Hence, the correct answer is \mathbf{C}

Q 17:

Solve $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y}$ is equal to
(A) $\pi / 2$ (B) $\pi / 3$ (C) $\pi / 4$ (D) $(-3 \pi) / 4$

Answer:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y} \\
& =\tan ^{-1}\left[\frac{\frac{x}{y}-\frac{x-y}{x+y}}{1+\left(\frac{x}{y}\right)\left(\frac{x-y}{x+y}\right)}\right] \\
& =\tan ^{-1}\left[\frac{\frac{x(x+y)-y(x-y)}{y(x+y)}}{\frac{y(x+y)+x(x-y)}{y(x+y)}}\right] \\
& =\tan ^{-1}\left(\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right) \\
& =\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x^{2}+y^{2}}\right)=\tan ^{-1} 1=\frac{\pi}{4}
\end{aligned}
$$

Hence, the correct answer is \mathbf{C}.

