Q 2:
Minimise $Z=-3 x+4 y$
subject to $x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0$.
Answer:

The feasible region determined by the system of constraints, $x+2 y \leq 8,3 x+2 y \leq 12, x \geq$ 0 , and $y \geq 0$, is as follows.

The corner points of the feasible region are $\mathrm{O}(0,0), \mathrm{A}(4,0), \mathrm{B}(2,3)$, and C $(0,4)$.
The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z}=\mathbf{- 3} \boldsymbol{x}+\mathbf{4} \boldsymbol{y}$	
$\mathrm{O}(0,0)$	0	
$\mathrm{~A}(4,0)$	-12	\rightarrow Minimum
$\mathrm{B}(2,3)$	6	
$\mathrm{C}(0,4)$	16	

Therefore, the minimum value of Z is -12 at the point $(4,0)$.

Q 3:

Maximise $Z=5 x+3 y$
subject to $3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0, y \geq 0$.
Answer:
The feasible region determined by the system of constraints, $3 x+5 y \leq 15$, $5 x+2 y \leq 10, x \geq 0$, and $y \geq 0$, are as follows.

The corner points of the feasible region are $\mathrm{O}(0,0) \mathrm{A}(2,0), \mathrm{B}(0,3)$, and $\mathrm{C}\left(\frac{20}{19}, \frac{45}{19}\right)$
The values of Z at these corner points are as follows

Corner point	$Z=\mathbf{5} \boldsymbol{x}+\mathbf{3 y}$	
$0(0,0)$	0	
$\mathrm{~A}(20)$	10	
$\mathrm{~B}\binom{0}{3}$	9	
$\mathrm{C}\left(\frac{20}{19}, \frac{45}{19}\right)$	$\frac{235}{19}$	\rightarrow Maximum

Therefore, the maximum value of Z is $\frac{235}{19}$ at the point $\left(\frac{20}{19}, \frac{45}{19}\right)$.

Q 4:

Minimise $Z=3 x+5 y$
such that $x+3 y \geq 3, x+y \geq 2, x, y \geq 0$.
Answer:
The feasibleregion determined by the system of constraints, $x+3 y \geq 3, x+y \geq 2$, and x, $y \geq 0$, is as follows

It can be seen that the feasible region is unbounded.

The corner points of the feasible region are $\mathrm{A}(3,0), \mathrm{B}\left(\frac{3}{2}, \frac{1}{2}\right)$, and $\mathrm{C}(0,2)$. The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z}=\mathbf{3 x}+\mathbf{5 y}$	
$\mathrm{A}(3,0)$	9	
$\mathrm{~B}\left(\frac{3}{2}, \frac{1}{2}\right)$	7	\rightarrow Smallest
$\mathrm{C}(0,2)$	10	

As the feasible region is unbounded, therefore, 7 may or may not be the minimum value of Z.
For this, we draw the graph of the inequality, $3 x+5 y<7$, and check whether the resulting half plane has points in common with the feasible region or not.
It can be seen that the feasible region has no common point with $3 x+5 y<7$ Therefore,
the minimum value of Z is 7 at $\left(\frac{3}{2}, \frac{1}{2}\right)$.

Q 5:

Maximise $Z=3 x+2 y$
subject to $x+2 y \leq 10,3 x+y \leq 15, x, y \geq 0$.
Answer:
The feasible region determined by the constraints, $x+2 y \leq 10,3 x+y \leq 15, x \geq 0$, and $y \geq 0$, is as follows.

The corner points of the feasible region are $\mathrm{A}(5,0), \mathrm{B}(4,3)$, and $\mathrm{C}(0,5)$.
The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z}=\mathbf{3 x}+\mathbf{2 y}$	
$\mathrm{A}(5,0)$	15	
$\mathrm{~B}(4,3)$	18	\rightarrow Maximum
$\mathrm{C}(0,5)$	10	

Therefore, the maximum value of Z is 18 at the point $(4,3)$.

Q 6:

Minimise $Z=x+2 y$
subject to $2 x+y \geq 3, x+2 y \geq 6, x, y \geq 0$.

Answer:
The feasible region determined by the constraints, $2 x+y \geq 3, x+2 y \geq 6, x \geq 0$, and y ≥ 0, is as follows.

The corner points of the feasible region are $A(6,0)$ and $B(0,3)$. The values of Z at these corner points are as follows.

Corner point	$Z=x+2 y$
$\mathrm{~A}(6,0)$	6
$\mathrm{~B}(0,3)$	6

It can be seen that the value of Z at points A and B is same. If we take any other point such as $(2,2)$ on line $x+2 y=6$, then $Z=6$

Thus, the minimum value of Z occurs for more than 2 points.
Therefore, the value of Z is minimum at every point on the line, $x+2 y=6$

Q 7:

Minimise and Maximise $Z=5 x+10 y$
subject to $x+2 y \leq 120, x+y \geq 60, x-2 y \geq 0, x, y \geq 0$.
Answer:
The feasible region determined by the constraints, $x+2 y \leq 120, x+y \geq 60, x-2 y \geq$ $0, x \geq 0$, and $y \geq 0$, is as follows.

The corner points of the feasible region are A $(60,0), B(120,0), C(60,30)$, and D (40, 20).

The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z = 5} \boldsymbol{x}+\mathbf{1 0 y}$	
$\mathrm{A}(60,0)$	300	\rightarrow Minimum
$\mathrm{B}(120,0)$	600	\rightarrow Maximum
$\mathrm{C}(60,30)$	600	\rightarrow Maximum
$\mathrm{D}(40,20)$	400	

The minimum value of Z is 300 at $(60,0)$ and the maximum value of Z is 600 at all the points on the line segment joining $(120,0)$ and $(60,30)$.

Q 8:

Minimise and Maximise $Z=x+2 y$

Answer:
The feasible region determined by the constraints, $x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq$ $200, x \geq 0$, and $y \geq 0$, is as follows.

The corner points of the feasible region are $A(0,50), B(20,40), C(50,100)$, and $D(0$, 200).

The values of Z at these corner points are as follows

Corner point	$Z=\boldsymbol{x}+\mathbf{2 y}$
$A(0,50)$	100
$B(20,40)$	100
$C(50,100)$	250
M nimum	
$(0,200)$	400
Mimum	

The maximum value of Z is 400 at $(0,200)$ and the minimum value of Z is 100 at all the points on the line segment joining the points $(0,50)$ and $(20,40)$.

Q 9:

Maximise $Z=x+2 y$, subject to the constraints:

$$
x \geq 3, x+y \geq 5, x+2 y \geq 6, y \geq 0 .
$$

Answer

The feasible region determined by the constraints, $x \geq 3, x+y \geq 5, x+2 y \geq 6$, and $y \geq 0$, s as follows

Exerase 122

Q 1:

Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food P costs Rs $60 / \mathrm{kg}$ and Food Q costs Rs $80 / \mathrm{kg}$. Food P contains 3 units $/ \mathrm{kg}$ of vitamin A and 5 units $/ \mathrm{kg}$ of vitamin B while food Q contains 4 units $/ \mathrm{kg}$ of vitamin A and 2 units $/ \mathrm{kg}$ of vitamin B. Determine the minimum cost of the mixture?

Answer:
Let the mixture contain $x \mathrm{~kg}$ of food P and $y \mathrm{~kg}$ of food Q . Therefore, $x \geq 0$ and $y \geq 0$

The given information can be compiled in a table as follows.

	Vitamin A (units/kg)	Vitamin B (units/kg)	Cost (Rs/kg)
Food P	3	5	60
Food Q	4	2	80
Requirement (units/kg)	8	11	

The mixture must contain at least 8 units of vitamin A and 11 units of vitamin B.
Therefore, the constraints are
$3 x+4 y \geq 8$
$5 x+2 y \geq 11$
Total cost, Z, of purchasing food is, $Z=60 x+80 y$
The mathematical formulation of the given problem is
Minimise $Z=60 x+80 y \ldots$ (1)
subject to the constraints,
$3 x+4 y \geq 8 \ldots$ (2)
$5 x+2 y \geq 11 \ldots$ (3)
$x, y \geq 0 \ldots$ (4)
The feasible region determined by the system of constraints is as follows.
$x \geq 0$ and $y \geq 0$
The cost of a desktop model is Rs 25000 and of a portable model is Rs 4000 . However, the merchant can invest a maximum of Rs 70 lakhs.
$\therefore 25000 x+40000 y \leq 7000000$
$5 x+8 y \leq 1400$
The monthly demand of computers will not exceed 250 units.
$\therefore x+y \leq 250$
The profit on a desktop model is Rs 4500 and the profit on a portable model is Rs 5000 .
Total profit, $Z=4500 x+5000 y$
Thus, the mathematical formulation of the given problem is
Maximum $Z=4500 x+5000 y$
subject to the constraints,
$5 x+8 y \leq 1400$
$x+y \leq 250$
$x, y \geq 0$
The feasible region determined by the system of constraints is as follows.

The corner points are A $(250,0), \mathrm{B}(200,50)$, and C $(0,175)$.
The values of Z at these corner points are as follows

Total cost of the diet, $Z=4 x+6 y$
The mathematical formulation of the given problem is
Minimise $Z=4 x+6 y$.
subject to the constraints,
$3 x+6 y \geq 80 \ldots$ (2)
$4 x+3 y \geq 100 \ldots$ (3)
$x, y \geq 0 \ldots$ (4)
The feasible region determined by the constraints is as follows.

It can be seen that the feasible region is unbounded.
The corner points of the feasible region are $\mathrm{A}\left(\frac{8}{3}, 0\right), \mathrm{B}\left(2, \frac{1}{2}\right)$, and $\mathrm{C}\left(0, \frac{11}{2}\right)$.
The corner points are $\mathrm{A}\left(\frac{80}{3}, 0\right), \mathrm{B}\left(24, \frac{4}{3}\right)$, and $\mathrm{C}\left(0, \frac{100}{3}\right)$.
The values of Z at these corner points are as follows.
F_{1} consists of 10% nitrogen and F_{2} consists of 5% nitrogen. However, the farmer requires at least 14 kg of nitrogen.
$\therefore 10 \%$ of $x+5 \%$ of $y \geq 14$
$\frac{x}{10}+\frac{y}{20} \geq 14$
$2 x+y \geq 280$
F_{1} consists of 6% phosphoric acid and F_{2} consists of 10% phosphoric acid. However, the farmer requires at least 14 kg of phosphoric acid.
$\therefore 6 \%$ of $x+10 \%$ of $y \geq 14$
$\frac{6 x}{100}+\frac{10 y}{100} \geq 14$
$3 x+56 y \geq 700$
Total cost of fertilizers, $Z=6 x+5 y$
The mathematical formulation of the given problem is
Minimize $Z=6 x+5 y \ldots$ (1)
subject to the constraints,
$2 x+y \geq 280 \ldots$ (2)
$3 x+5 y \geq 700 \ldots$ (3)
$x, y \geq 0 \ldots$ (4)
The feasible region determined by the system of constraints is as follows.

Q 11:

The corner points of the feasible region determined by the following system of linear inequalities:
$2 x+y \leq 10, x+3 y \leq 15, x y \geq 0$ are $(0,0),(5,0),(3,4)$ and $(0,5)$ Let $Z=p x+q y$, where p, q >0. Condition on p and q so that the maximum of Z occurs at both $(3,4)$ and $(0,5)$ is (A) $p=q$ (B) $p=2 q$ (C) $p=3 q$ (D) $q=3 p$

Answer:
The maximum value of Z is unique.
It is given that the maximum value of Z occurs at two points, $(3,4)$ and $(0,5)$.
\therefore Value of Z at $(3,4)=$ Value of Z at $(0,5)$
$\Rightarrow p(3)+q(4)=p(0)+q(5)$
$\Rightarrow 3 p+4 q=5 q$
$\Rightarrow q=3 p$

Hence, the correct answer is D.

Miscellaneous Solutions

Q 1:

Refer to Example 9. How many packets of each food should be used to maximize the amount of vitamin A in the diet? What is the maximum amount of vitamin A in the diet? Answer:
Let the diet contain x and y packets of foods P and Q respectively. Therefore, $x \geq 0$ and $y \geq 0$

The mathematical formulation of the given problem is as follows.
Maximize $z=6 x+3 y \ldots$ (1)
subject to the constraints,
$4 x+y \geq 80$
$x+5 y \geq 115$
$3 x+2 y \leq 150$
$x, y \geq 0$
The feasible region determined by the system of constraints is as follows.

The corner points of the feasible region are $A(15,20), B(40,15)$, and $C(2,72)$.
The values of z at these corner points are as follows.

For this, we draw a graph of the inequality, $250 x+200 y<1950$ or $5 x+4 y<39$, and check whether the resulting half plane has points in common with the feasible region or not.

It can be seen that the feasible region has no common point with $5 x+4 y<39$ Therefore, the minimum value of z is 2000 at $(3,6)$.

Thus, 3 bags of brand P and 6 bags of brand Q should be used in the mixture to minimize the cost to Rs 1950.

Q 3:

A dietician wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin $A, 12$ units of vitamin B and 8 units of vitamin C . The vitamin content of one kg food is given below:

Food	Vitamin A	Vitamin B	Vitamin C
X	1	2	3
Y	2	2	1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least cost of the mixture which will produce the required diet?

Answer:
Let the mixture contain $x \mathrm{~kg}$ of food X and $y \mathrm{~kg}$ of food Y .
The mathematical formulation of the given problem is as follows.
Minimize $z=16 x+20 y \ldots$ (1)
subject to the constraints,
$x+2 y \geq 10$
$x+y \geq 6$
$3 x+y \geq 8$
$x, y \geq 0$
The feasible region determined by the system of constraints is as follows.

Q 4:

A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Type of toys	Machines		
	I	II	III
A	12	18	6
B	6	0	9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5 , show that 15 toys of type A and 30 of type B should be manufactured in a day to get maximum profit.
Answer:
Let x and y toys of type A and type B respectively be manufactured in a day.
The given problem can be formulated as follows.
Maximize $z=7.5 x+5 y$... (1)
subject to the constraints,
$2 x+y \leq 60$
$x \leq 20$
$2 x+3 y \leq 120$
$x, y \geq 0$
The feasible region determined by the constraints is as follows.
many passengers prefer to travel by economy class than by the executive class.
Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?

Answer
Let the airline sell x tickets of executive class and y tickets of economy class.
The mathematical formulation of the given problem is as follows.
Maximize $z=1000 x+600 y$... (1)
subject to the constraints,
$x+y \leq 200$
$x \geq 20$
$y-4 x \geq 0$
$x, y \geq 0$
The feasible region determined by the constraints is as follows.

The corner points of the feasible region are A $(20,80), B(40,160)$, and C $(20,180)$.

The given problem can be represented diagrammatically as follows.

$x \geq 0, y \geq 0$, and $100-x-y \geq 0$
$\Rightarrow x \geq 0, y \geq 0$, and $x+y \leq 100$
$60-x \geq 0,50-y \geq 0$, and $x+y-60 \geq 0$
$\Rightarrow x \leq 60, y \leq 50$, and $x+y \geq 60$
Total transportation cost z is given by,

$$
\begin{aligned}
z & =6 x+3 y+2.5(100-x-y)+4(60-x)+2(50-y)+3(x+y-60) \\
& =6 x+3 y+250-2.5 x-2.5 y+240-4 x+100-2 y+3 x+3 y-180 \\
& =2.5 x+1.5 y+410
\end{aligned}
$$

The given problem can be formulated as
Minimize $z=2.5 x+1.5 y+410$... (1)
subject to the constraints,

The minimum value of z is 510 at $(10,50)$.
Thus, the amount of grain transported from A to D, E, and F is 10 quintals, 50 quintals, and 40 quintals respectively and from B to D, E, and F is 50 quintals, 0 quintals, and 0 quintals respectively.

Q 7:

An oil company has two depots A and B with capacities of 7000 L and 4000 L respectively. The company is to supply oil to three petrol pumps, D, E and F whose requirements are 4500L, 3000L and 3500L respectively. The distance (in km) between the depots and the petrol pumps is given in the following table:

Distance in (km)		
From/To	A	B
D	7	3
E	6	4
F	3	2

Assuming that the transportation cost of 10 litres of oil is Re 1 per km, how should the delivery be scheduled in order that the transportation cost is minimum? What is the minimum cost?

Answer:
Let x and y litres of oil be supplied from A to the petrol pumps, D and E. Then, (7000-$x-y$) will be supplied from A to petrol pump F.

The requirement at petrol pump D is 4500 L . Since $x \mathrm{~L}$ are transported from depot A, the remaining ($4500-x$) L will be transported from petrol pump B.
Similarly, $(3000-y) L$ and $3500-(7000-x-y)=(x+y-3500) L$ will be transported from depot B to petrol pump E and F respectively.

The given problem can be represented diagrammatically as follows.

$x \geq 0, y \geq 0$, and $(7000-x-y) \geq 0$
$\Rightarrow x \geq 0, y \geq 0$, and $x+y \leq 7000$
$4500-x \geq 0,3000-y \geq 0$, and $x+y-3500 \geq 0$
$\Rightarrow x \leq 4500, y \leq 3000$, and $x+y \geq 3500$
Cost of transporting 10 L of petrol $=\operatorname{Re} 1$
Cost of transporting 1 L of petrol $=\operatorname{Rs} \frac{1}{10}$
Therefore, total transportation cost is given by,

$$
\begin{aligned}
z & =\frac{7}{10} \times x+\frac{6}{10} y+\frac{3}{10}(7000-x-y)+\frac{3}{10}(4500-x)+\frac{4}{10}(3000-y)+\frac{2}{10}(x+y-3500) \\
& =0.3 x+0.1 y+3950
\end{aligned}
$$

The problem can be formulated as follows.
Minimize $z=0.3 x+0.1 y+3950 \ldots$ (1)
subject to the constraints,

The minimum value of z is 4400 at $(500,3000)$.
Thus, the oil supplied from depot A is $500 \mathrm{~L}, 3000 \mathrm{~L}$, and 3500 L and from depot B is $4000 \mathrm{~L}, 0 \mathrm{~L}$, and 0 L to petrol pumps D, E, and F respectively.

The minimum transportation cost is Rs 4400.

Q 8:

A fruit grower can use two types of fertilizer in his garden, brand P and brand Q. The amounts (in kg) of nitrogen, phosphoric acid, potash, and chlorine in a bag of each brand are given in the table. Tests indicate that the garden needs at least 240 kg of phosphoric acid at least 270 kg of potash and at most 310 kg of chlorine.
If the grower wants to minimize the amount of nitrogen added to the garden, how many bags of each brand should be used? What is the minimum amount of nitrogen added in the garden?

kg per bag		
	Brand \mathbf{P}	Brand \mathbf{Q}
Nitrogen	3	3.5
Phosphoric acid	1	2
Potash	3	1.5
Chlorine	1.5	2

Answer:
Let the fruit grower use x bags of brand P and y bags of brand Q.
The problem can be formulated as follows.
Minimize $z=3 x+3.5 y$.
subject to the constraints,

Q 9:

Refer to question 8. If the grower wants to maximize the amount of nitrogen added to the garden, how many bags of each brand should be added? What is the maximum amount of nitrogen added?

Answer:
Let the fruit grower use x bags of brand P and y bags of brand Q .
The problem can be formulated as follows.
Maximize $z=3 x+3.5 y \ldots$ (1)
subject to the constraints,
$x+2 y \geq 240$
$x+0.5 y \geq 90$
$1.5 x+2 y \leq 310$
$x, y \geq 0$
The feasible region determined by the system of constraints is as follows.

The corner points are $A(140,50), B(20,140)$, and $C(40,100)$.
The values of z at these corner points are as follows.

