Class 11 Maths NCERT Solutions Chapter - 8

Binomial Theorem Class 11

Chapter 8 Binomial Theorem Exercise 8.1, 8.2, miscellaneous Solutions

Exercise 8.1 : Solutions of Questions on Page Number : 166
Q1:

Expand the expression (1-2x) ${ }^{5}$

Answer :

By using Binomial Theorem, the expression (1-2x) ${ }^{5}$ can be expanded as
$(1-2 x)^{5}$
$={ }^{5} \mathrm{C}_{0}(1)^{5}-{ }^{5} \mathrm{C}_{1}(1)^{4}(2 \mathrm{x})+{ }^{5} \mathrm{C}_{2}(1)^{3}(2 \mathrm{x})^{2}-{ }^{5} \mathrm{C}_{3}(1)^{2}(2 \mathrm{x})^{3}+{ }^{5} \mathrm{C}_{4}(1)^{1}(2 \mathrm{x})^{4}-{ }^{5} \mathrm{C}_{5}(2 \mathrm{x})^{5}$
$=1-5(2 \mathrm{x})+10\left(4 \mathrm{x}^{2}\right)-10\left(8 \mathrm{x}^{3}\right)+5\left(16 \mathrm{x}^{4}\right)-\left(32 \mathrm{x}^{5}\right)$
$=1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$

Q2 :
Expand the expressio ${ }_{\mathrm{n}}\left(\frac{2}{\mathrm{x}}-\frac{\mathrm{x}}{2}\right)^{5}$

Answer :

By using Binomial Theorem, the expression $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$ can be expanded as

$$
\begin{aligned}
\left(\frac{2}{\mathrm{x}}-\frac{\mathrm{x}}{2}\right)^{5} & ={ }^{5} \mathrm{C}_{0}\left(\frac{2}{\mathrm{x}}\right)^{5}-{ }^{5} \mathrm{C}_{1}\left(\frac{2}{\mathrm{x}}\right)^{4}\left(\frac{\mathrm{x}}{2}\right)+{ }^{5} \mathrm{C}_{2}\left(\frac{2}{\mathrm{x}}\right)^{3}\left(\frac{\mathrm{x}}{2}\right)^{2} \\
& -{ }^{5} \mathrm{C}_{3}\left(\frac{2}{\mathrm{x}}\right)^{2}\left(\frac{\mathrm{x}}{2}\right)^{3}+{ }^{5} \mathrm{C}_{4}\left(\frac{2}{\mathrm{x}}\right)\left(\frac{\mathrm{x}}{2}\right)^{4}-{ }^{5} \mathrm{C}_{5}\left(\frac{\mathrm{x}}{2}\right)^{5} \\
& =\frac{32}{\mathrm{x}^{5}}-5\left(\frac{16}{x^{4}}\right)\left(\frac{\mathrm{x}}{2}\right)+10\left(\frac{8}{\mathrm{x}^{3}}\right)\left(\frac{\mathrm{x}^{2}}{4}\right)-10\left(\frac{4}{\mathrm{x}^{2}}\right)\left(\frac{\mathrm{x}^{3}}{8}\right)+5\left(\frac{2}{\mathrm{x}}\right)\left(\frac{\mathrm{x}^{4}}{16}\right)-\frac{\mathrm{x}^{5}}{32} \\
& =\frac{32}{\mathrm{x}^{5}}-\frac{40}{\mathrm{x}^{3}}+\frac{20}{\mathrm{x}}-5 \mathrm{x}+\frac{5}{8} \mathrm{x}^{3}-\frac{\mathrm{x}^{5}}{32}
\end{aligned}
$$

Q3 :

Expand the expression $(2 x-3)^{6}$

Answer :
By using Binomial Theorem, the expression $(2 x-3)^{6}$ can be expanded as

$$
\begin{aligned}
(2 x-3)^{6}= & { }^{6} \mathrm{C}_{0}(2 x)^{6}-{ }^{6} \mathrm{C}_{1}(2 x)^{5}(3)+{ }^{6} \mathrm{C}_{2}(2 x)^{4}(3)^{2}-{ }^{6} \mathrm{C}_{3}(2 x)^{3}(3)^{3} \\
& +{ }^{6} \mathrm{C}_{4}(2 x)^{2}(3)^{4}-{ }^{6} \mathrm{C}_{5}(2 x)(3)^{5}+{ }^{6} \mathrm{C}_{6}(3)^{6} \\
= & 64 x^{6}-6\left(32 x^{5}\right)(3)+15\left(16 x^{4}\right)(9)-20\left(8 x^{3}\right)(27) \\
& +15\left(4 x^{2}\right)(81)-6(2 x)(243)+729 \\
= & 64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 x+729
\end{aligned}
$$

Q4 :
Expand the expression $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$

Answer :
By using Binomial Theorem, the expression $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$ can be expanded as

$$
\begin{aligned}
\left(\frac{\mathrm{x}}{3}+\frac{1}{\mathrm{x}}\right)^{5} & ={ }^{5} \mathrm{C}_{0}\left(\frac{\mathrm{x}}{3}\right)^{5}+{ }^{5} \mathrm{C}_{1}\left(\frac{\mathrm{x}}{3}\right)^{4}\left(\frac{1}{\mathrm{x}}\right)+{ }^{5} \mathrm{C}_{2}\left(\frac{\mathrm{x}}{3}\right)^{3}\left(\frac{1}{\mathrm{x}}\right)^{2} \\
& +{ }^{5} \mathrm{C}_{3}\left(\frac{\mathrm{x}}{3}\right)^{2}\left(\frac{1}{\mathrm{x}}\right)^{3}+{ }^{5} \mathrm{C}_{4}\left(\frac{\mathrm{x}}{3}\right)\left(\frac{1}{\mathrm{x}}\right)^{4}+{ }^{5} \mathrm{C}_{5}\left(\frac{1}{\mathrm{x}}\right)^{5} \\
& =\frac{\mathrm{x}^{5}}{243}+5\left(\frac{x^{4}}{81}\right)\left(\frac{1}{\mathrm{x}}\right)+10\left(\frac{\mathrm{x}^{3}}{27}\right)\left(\frac{1}{\mathrm{x}^{2}}\right)+10\left(\frac{\mathrm{x}^{2}}{9}\right)\left(\frac{1}{\mathrm{x}^{3}}\right)+5\left(\frac{\mathrm{x}}{3}\right)\left(\frac{1}{\mathrm{x}^{4}}\right)+\frac{1}{\mathrm{x}^{5}} \\
& =\frac{\mathrm{x}^{5}}{243}+\frac{5 \mathrm{x}^{3}}{81}+\frac{10 \mathrm{x}}{27}+\frac{10}{9 \mathrm{x}}+\frac{5}{3 \mathrm{x}^{3}}+\frac{1}{\mathrm{x}^{5}}
\end{aligned}
$$

Q5 :
Expand $\left(x+\frac{1}{x}\right)^{6}$

Answer :

By using Binomial Theorem, the expression $\left(x+\frac{1}{x}\right)^{6}$ can be expanded as

$$
\begin{aligned}
\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{6}= & { }^{6} \mathrm{C}_{0}(\mathrm{x})^{6}+{ }^{6} \mathrm{C}_{1}(\mathrm{x})^{5}\left(\frac{1}{\mathrm{x}}\right)+{ }^{6} \mathrm{C}_{2}(\mathrm{x})^{4}\left(\frac{1}{\mathrm{x}}\right)^{2} \\
& +{ }^{6} \mathrm{C}_{3}(\mathrm{x})^{3}\left(\frac{1}{\mathrm{x}}\right)^{3}+{ }^{6} \mathrm{C}_{4}(\mathrm{x})^{2}\left(\frac{1}{\mathrm{x}}\right)^{4}+{ }^{6} \mathrm{C}_{5}(\mathrm{x})\left(\frac{1}{\mathrm{x}}\right)^{5}+{ }^{6} \mathrm{C}_{6}\left(\frac{1}{\mathrm{x}}\right)^{6} \\
= & \mathrm{x}^{6}+6(\mathrm{x})^{5}\left(\frac{1}{\mathrm{x}}\right)+15(\mathrm{x})^{4}\left(\frac{1}{\mathrm{x}^{2}}\right)+20(\mathrm{x})^{3}\left(\frac{1}{\mathrm{x}^{3}}\right)+15(\mathrm{x})^{2}\left(\frac{1}{\mathrm{x}^{4}}\right)+6(\mathrm{x})\left(\frac{1}{\mathrm{x}^{5}}\right)+\frac{1}{\mathrm{x}^{6}} \\
= & \mathrm{x}^{6}+6 \mathrm{x}^{4}+15 \mathrm{x}^{2}+20+\frac{15}{\mathrm{x}^{2}}+\frac{6}{\mathrm{x}^{4}}+\frac{1}{\mathrm{x}^{6}}
\end{aligned}
$$

Q6 :
Using Binomial Theorem, evaluate (96) ${ }^{3}$

Answer :

96 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.

It can be written that, $96=100-4$

$$
\begin{aligned}
\therefore(96)^{3} & =(100-4)^{3} \\
& ={ }^{3} \mathrm{C}_{0}(100)^{3}-{ }^{3} \mathrm{C}_{1}(100)^{2}(4)+{ }^{3} \mathrm{C}_{2}(100)(4)^{2}-{ }^{3} \mathrm{C}_{3}(4)^{3} \\
& =(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3} \\
& =1000000-120000+4800-64 \\
& =884736
\end{aligned}
$$

Q7 :

Using Binomial Theorem, evaluate (102) ${ }^{5}$

Answer :

102can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, $102=100+2$

$$
\begin{aligned}
\therefore(102)^{5}= & (100+2)^{5} \\
= & { }^{5} \mathrm{C}_{0}(100)^{5}+{ }^{5} \mathrm{C}_{1}(100)^{4}(2)+{ }^{5} \mathrm{C}_{2}(100)^{3}(2)^{2}+{ }^{5} \mathrm{C}_{3}(100)^{2}(2)^{3} \\
& +{ }^{5} \mathrm{C}_{4}(100)(2)^{4}+{ }^{5} \mathrm{C}_{5}(2)^{5} \\
= & (100)^{5}+5(100)^{4}(2)+10(100)^{3}(2)^{2}+10(100)^{2}(2)^{3}+5(100)(2)^{4}+(2)^{5} \\
= & 10000000000+1000000000+40000000+800000+8000+32 \\
= & 11040808032
\end{aligned}
$$

Q8:

Using Binomial Theorem, evaluate (101) ${ }^{4}$

Answer :

101 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, $101=100+1$

$$
\begin{aligned}
\therefore(101)^{4} & =(100+1)^{4} \\
& ={ }^{4} \mathrm{C}_{0}(100)^{4}+{ }^{4} \mathrm{C}_{1}(100)^{3}(1)+{ }^{4} \mathrm{C}_{2}(100)^{2}(1)^{2}+{ }^{4} \mathrm{C}_{3}(100)(1)^{3}+{ }^{4} \mathrm{C}_{4}(1)^{4} \\
& =(100)^{4}+4(100)^{3}+6(100)^{2}+4(100)+(1)^{4} \\
& =100000000+4000000+60000+400+1 \\
& =104060401
\end{aligned}
$$

Q9 :
Using Binomial Theorem, evaluate (99) ${ }^{5}$

Answer :

99 can be written as the sum or difference of two numbers whose powers are easier to calculate and then, Binomial Theorem can be applied.

It can be written that, $99=100-1$

$$
\begin{aligned}
\therefore(99)^{5}= & (100-1)^{5} \\
= & { }^{5} \mathrm{C}_{0}(100)^{5}-{ }^{5} \mathrm{C}_{1}(100)^{4}(1)+{ }^{5} \mathrm{C}_{2}(100)^{3}(1)^{2}-{ }^{5} \mathrm{C}_{3}(100)^{2}(1)^{3} \\
& +{ }^{5} \mathrm{C}_{4}(100)(1)^{4}-{ }^{5} \mathrm{C}_{5}(1)^{5} \\
= & (100)^{5}-5(100)^{4}+10(100)^{3}-10(100)^{2}+5(100)-1 \\
= & 10000000000-500000000+10000000-100000+500-1 \\
= & 10010000500-500100001 \\
= & 9509900499
\end{aligned}
$$

Q10 :
Using Binomial Theorem, indicate which number is larger (1.1) $)^{10000} \mathrm{or} 1000$.

Answer :

By splitting 1.1 and then applying Binomial Theorem, the first few terms of (1.1) ${ }^{10000} \mathrm{can}$ be obtained as
$(1.1)^{10000}=(1+0.1)^{10000}$

$$
\begin{aligned}
& ={ }^{10000} \mathrm{C}_{0}+{ }^{10000} \mathrm{C}_{1}(1.1)+\text { Other positive terms } \\
& =1+10000 \times 1.1+\text { Other positive terms } \\
& =1+11000+\text { Other positive terms } \\
& >1000
\end{aligned}
$$

Hence, $(1.1)^{10000}>1000$

Q11 :
Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate

$$
(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}
$$

Answer :
Using Binomial Theorem, the expressions, $(a+b)^{4}$ and $(a-b)^{4}$, can be expanded as

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \\
& (\mathrm{a}-\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \\
& \begin{aligned}
\therefore(\mathrm{a}+\mathrm{b})^{4}-(\mathrm{a}-\mathrm{b})^{4} & ={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \\
& -\left[{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}\right] \\
& =2\left({ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}\right)=2\left(4 \mathrm{a}^{3} \mathrm{~b}+4 \mathrm{ab}^{3}\right) \\
= & 8 \mathrm{ab}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)
\end{aligned}
\end{aligned}
$$

By putting $\mathrm{a}=\sqrt{3}$ and $\mathrm{b}=\sqrt{2}$, we obtain

$$
\begin{aligned}
(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4} & =8(\sqrt{3})(\sqrt{2})\left\{(\sqrt{3})^{2}+(\sqrt{2})^{2}\right\} \\
& =8(\sqrt{6})\{3+2\}=40 \sqrt{6}
\end{aligned}
$$

Q12 :

Find $(x+1)^{6}+(x-1)^{6}$. Hence or otherwise evaluate $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$.

Answer :

Using Binomial Theorem, the expressions, $(x+1)^{6}$ and $(x-1)^{6}$, can be expanded as

$$
\begin{aligned}
& (\mathrm{x}+1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\
& (\mathrm{x}-1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\
& \therefore(\mathrm{x}+1)^{6}+(\mathrm{x}-1)^{6}=2\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6}\right] \\
& \quad=2\left[\mathrm{x}^{6}+15 \mathrm{x}^{4}+15 \mathrm{x}^{2}+1\right]
\end{aligned}
$$

By putting $\mathrm{x}=\sqrt{2}$, we obtain

$$
\begin{aligned}
(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6} & =2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right] \\
& =2(8+15 \times 4+15 \times 2+1) \\
& =2(8+60+30+1) \\
& =2(99)=198
\end{aligned}
$$

Q13 :
Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever nis a positive integer.

Answer :

In order to show that $9^{n+1}-8 n-9$ is divisible by 64 , it has to be proved that,
$9^{n+1}-8 n-9=64 k$, where k is some natural number
By Binomial Theorem,
$(1+\mathrm{a})^{\mathrm{m}}={ }^{m} \mathrm{C}_{0}+{ }^{m} \mathrm{C}_{1} \mathrm{a}+{ }^{m} \mathrm{C}_{2} \mathrm{a}^{2}+\ldots+{ }^{m} \mathrm{C}_{\mathrm{m}} \mathrm{a}^{\mathrm{m}}$
For $a=8$ and $m=n+1$, we obtain
$(1+8)^{n+1}={ }^{n+1} C_{0}+{ }^{n+1} C_{1}(8)+{ }^{n+1} C_{2}(8)^{2}+\ldots+{ }^{n+1} C_{n+1}(8)^{n+1}$
$\Rightarrow 9^{n+1}=1+(n+1)(8)+8^{2}\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots+{ }^{n+1} C_{n+1}(8)^{n-1}\right]$
$\Rightarrow 9^{n+1}=9+8 n+64\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots+{ }^{n+1} C_{n+1}(8)^{n-1}\right]$
$\Rightarrow 9^{\mathrm{n}+1}-8 \mathrm{n}-9=64 \mathrm{k}$, where $\mathrm{k}={ }^{\mathrm{n}+1} \mathrm{C}_{2}+{ }^{\mathrm{n}+1} \mathrm{C}_{3} \times 8+\ldots+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}+1}(8)^{\mathrm{n}-1}$ is a natural number
Thus $9^{n+1}-8 n-9$ is divisible by 64 , wheneve is a positive integer

Q14 :

Prove tha $\sum_{t=0}^{n} 3^{r}{ }^{n} C_{r}=4^{n}$.

Answer :

By Binomial Theorem,

$$
\sum_{r=0}^{n}{ }^{n} C_{r} a^{n-r} b^{r}=(a+b)^{n}
$$

By putting $b=3$ and $a=1$ in the above equation, we obtain

$$
\begin{aligned}
& \sum_{r=0}^{n}{ }^{n} C_{r}(1)^{n-r}(3)^{r}=(1+3)^{n} \\
& \Rightarrow \sum_{r=0}^{n} 3^{r}{ }^{n} C_{r}=4^{n}
\end{aligned}
$$

Hence, proved.

Exercise 8.2 : Solutions of Questions on Page Number : 171
Q1 :
Answer:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Assuming that x^{5} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+3)^{8}$, we obtain
$\mathrm{T}_{\mathrm{r}+1}={ }^{8} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{8-\mathrm{r}}(3)^{\mathrm{r}}$
Comparing the indices of x in x^{5} and in T_{r+1}, we obtain
$r=3$
Thus, the coefficient of x^{5} is ${ }^{8} \mathrm{C}_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2.5!} \cdot 3^{3}=1512$

Q2 :
Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$

Answer :

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Assuming that $a^{5} b^{7}$ occurs in the $(r+1)^{\text {thterm }}$ of the expansion $(a-2 b)^{12}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{12} \mathrm{C}_{\mathrm{r}}(\mathrm{a})^{12-\mathrm{r}}(-2 \mathrm{~b})^{\mathrm{r}}={ }^{12} \mathrm{C}_{\mathrm{r}}(-2)^{\mathrm{r}}(\mathrm{a})^{12-\mathrm{r}}(\mathrm{~b})^{\mathrm{r}}
$$

Comparing the indices of aand b in $a^{5} b^{7}$ and in T_{r+1}, we obtain
$r=7$
Thus, the coefficient
of $a^{5} b^{7}$ is

$$
{ }^{12} \mathrm{C}_{7}(-2)^{7}=-\frac{12!}{7!5!} \cdot 2^{7}=-\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8.7!}{5 \cdot 4 \cdot 3 \cdot 2.7!} \cdot 2^{7}=-(792)(128)=-101376
$$

Q3 :

Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$

Answer:

It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term\} in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.
Thus, the general term in the expansion of $\left(x^{2}-y^{f}\right)$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{6} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{6-\mathrm{r}}(-\mathrm{y})^{r}=(-1)^{\mathrm{r}}{ }^{6} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{12-2 \mathrm{r}} \cdot \mathrm{y}^{r}
$$

Q4 :
Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$

Answer:
It is known that the general term $T_{r+1}\left\{\right.$ which is the $(r+1)^{\text {lh }}$ term $\}$ in the binomial expansion of $(a+b)^{n}$ is given
by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the general term in the expansion of $\left(x^{2}-y x\right)^{12}$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{12} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{12-\mathrm{r}}(-\mathrm{yx})^{\mathrm{r}}=(-1)^{\mathrm{r}}{ }^{12} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{24-2 \mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}=(-1)^{\mathrm{r}}{ }^{12} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{24-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}
$$

Q5:
Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.

Answer :
It is known that $(r+1)^{\mathrm{n}}$ term, $\left(T_{t+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{a}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.
Thus, the $4^{n t}$ term in the expansion of $(x-2 y)^{12}$ is

$$
\mathrm{T}_{4}=\mathrm{T}_{3+1}={ }^{12} \mathrm{C}_{3}(\mathrm{x})^{12-3}(-2 y)^{3}=(-1)^{3} \cdot \frac{12!}{3!9!} \cdot x^{9} \cdot(2)^{3} \cdot \mathrm{y}^{3}=-\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} x^{9} y^{3}=-1760 x^{9} y^{3}
$$

Q6 :

Find the $13^{\text {nt}}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$
Answer :
It is known that $(r+1)^{\mathrm{n}}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{ar}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.

Thus, $13^{\text {thterm }}$ in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ s

$$
\begin{aligned}
\mathrm{T}_{13}=\mathrm{T}_{12+1} & ={ }^{18} \mathrm{C}_{12}(9 \mathrm{x})^{18-12}\left(-\frac{1}{3 \sqrt{\mathrm{x}}}\right)^{12} \\
& =(-1)^{12} \frac{18!}{12!6!}(9)^{6}(\mathrm{x})^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{\mathrm{x}}}\right)^{12} \\
& =\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13.12!}{12!.6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6} \cdot\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right) \quad\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right] \\
& =18564
\end{aligned}
$$

Q7 :

Find the middle terms in the expansions of $\left(3-\frac{\mathrm{x}^{3}}{6}\right)^{7}$

Answer:

It is known that in the expansion of $(a+b)^{n}$, if n is odd, then there are two middle terms, namely, $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term and $\left(\frac{\mathrm{n}+1}{2}+1\right)^{\text {th }}$ term.

Therefore, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{\text {th }}=4^{\text {th }}$ term and $\left(\frac{7+1}{2}+1\right)^{\text {th }}=5^{\text {th }}$
term

$$
\begin{aligned}
\mathrm{T}_{4}=\mathrm{T}_{3+1} & ={ }^{7} \mathrm{C}_{3}(3)^{7-3}\left(-\frac{\mathrm{x}^{3}}{6}\right)^{3}=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{\mathrm{x}^{9}}{6^{3}} \\
& =-\frac{7 \cdot 6 \cdot 5.4!}{3 \cdot 2 \cdot 4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot \mathrm{x}^{9}=-\frac{105}{8} \mathrm{x}^{9}
\end{aligned} \mathrm{~T}_{5}=\mathrm{T}_{4+1}={ }^{7} \mathrm{C}_{4}(3)^{7-4}\left(-\frac{\mathrm{x}^{3}}{6}\right)^{4}=(-1)^{4} \frac{7!}{4!3!}(3)^{3} \cdot \frac{\mathrm{x}^{12}}{6^{4}} .
$$

Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Q8:

Find the middle terms in the expansions of $\left(\frac{x}{3}+9 y\right)^{10}$

Answer :

It is known that in the expansion $(a+b)^{n}$, if n is even, then the middle term is $\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }}$ term.
Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{\text {th }}=6^{\text {th }}$ term

$$
\begin{aligned}
\mathrm{T}_{6}=\mathrm{T}_{5+1} & ={ }^{10} \mathrm{C}_{5}\left(\frac{\mathrm{x}}{3}\right)^{10-5}(9 \mathrm{y})^{5}=\frac{10!}{5!5!} \cdot \frac{\mathrm{x}^{5}}{3^{5}} \cdot 9^{5} \cdot \mathrm{y}^{5} \\
& =\frac{10.9 \cdot 8 \cdot 7 \cdot 6.5!}{5 \cdot 4 \cdot 3 \cdot 2.5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot \mathrm{x}^{5} \mathrm{y}^{5} \quad\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right] \\
& =252 \times 3^{5} \cdot \mathrm{x}^{5} \cdot \mathrm{y}^{5}=61236 \mathrm{x}^{5} \mathrm{y}^{5}
\end{aligned}
$$

Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$.

Q9 :
In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.

Answer :

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{\mathrm{n}-\mathrm{r}} \mathbf{b}^{\mathrm{r}}$.
Assuming that a^{m} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{r+1}==^{m+n} C_{r}(1)^{m+n-r}(a)^{r}={ }^{m+n} C_{r} a^{r}
$$

Comparing the indices of ain a^{m} and in T_{r+1}, we obtain
$r=m$
Therefore, the coefficient of a^{m} is

$$
\begin{equation*}
{ }^{m+n} C_{m}=\frac{(m+n)!}{m!(m+n-m)!}=\frac{(m+n)!}{m!n!} \tag{1}
\end{equation*}
$$

Assuming that a^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{k+1}={ }^{m+n} C_{k}(1)^{m+n-k}(a)^{k}={ }^{m+n} C_{k}(a)^{k}
$$

Comparing the indices of ain a^{n} and in T_{k+1}, we obtain
$k=n$
Therefore, the coefficient of a^{n} is

$$
\begin{equation*}
{ }^{m+n} C_{n}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!} \tag{2}
\end{equation*}
$$

Thus, from (1) and (2), it can be observed that the coefficients of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are equal.

Q10 :
The coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio 1:3:5. Find n and r.

Answer :
It is known that $(k+1)^{\text {th }}$ term, $\left(T_{k+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{k+1}={ }^{n} C_{k} a^{n-k} b^{k}$
Therefore, $(r-1)^{\text {nh }}$ term in the expansion of $(x+1)^{n}$ is $\quad T_{r-1}={ }^{n} C_{r-2}(x)^{n-(r-2)}(1)^{(r-2)}={ }^{n} C_{r-2} x^{n-r+2}$
$r^{\text {hn }}$ term in the expansion of $(x+1)^{n}$ is $T_{r}={ }^{n} C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)}={ }^{n} C_{r-1} x^{n-r+1}$
$(r+1)^{\text {nt }}$ term in the expansion of $(x+1)^{n}$ is $T_{r+1}={ }^{n} C_{r}(x)^{n-r}(1)^{r}={ }^{n} C_{r} x^{n-r}$
Therefore, the coefficients of the $(r-1)^{\text {th }}$, $r^{\text {th }}$, and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1) \mathrm{n}$
are ${ }^{n} C_{r-2},{ }^{n} C_{r-1}$, and ${ }^{n} C_{r}$ respectively. Since these coefficients are in the ratio $1: 3: 5$, we obtain
$\frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}}{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}}=\frac{1}{3}$ and $\frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}}{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}}=\frac{3}{5}$

$$
\begin{aligned}
\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!} & =\frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)(n-r+1)!} \\
& =\frac{r-1}{n-r+2}
\end{aligned}
$$

$$
\begin{align*}
& \therefore \frac{r-1}{n-r+2}=\frac{1}{3} \\
& \Rightarrow 3 r-3=n-r+2 \\
& \Rightarrow n-4 r+5=0 \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!} & =\frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} \\
& =\frac{r}{n-r+1}
\end{aligned}
$$

$$
\therefore \frac{r}{n-r+1}=\frac{3}{5}
$$

$$
\Rightarrow 5 r=3 n-3 r+3
$$

$$
\begin{equation*}
\Rightarrow 3 \mathrm{n}-8 \mathrm{r}+3=0 \tag{2}
\end{equation*}
$$

Multiplying (1) by 3 and subtracting it from (2), we obtain
$4 r-12=0 \Rightarrow r=3$
Putting the value of r in (1), we obtain
$n-12+5=0 \Rightarrow n=7$
Thus, $n=7$ and $r=3$

Q11 :
Prove that the coefficient of x^{\prime} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{\prime} in the expansion of $(1+x)^{2 n-1}$.

Answer :

It is known that $(r+1)^{n}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{a}-\mathrm{r}} \mathrm{b}^{r}$.
Assuming that x^{n} occurs in the $(r+1)^{\text {nh }}$ term of the expansion of $(1+x)^{2 n}$, we obtain
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}}(1)^{2 \mathrm{n}-\mathrm{r}}(\mathrm{x})^{r}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{r}$
Comparing the indices of x in x^{\prime} and in T_{t+1}, we obtain
$r=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is

$$
\begin{equation*}
{ }^{2 n} C_{n}=\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{(n!)^{2}} \tag{1}
\end{equation*}
$$

Assuming that x^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+x)^{2 n-1}$, we obtain

$$
T_{k+1}={ }^{2 n-1} C_{k}(1)^{2 n-1-k}(x)^{k}==^{2 n-1} C_{k}(x)^{k}
$$

Comparing the indices of x in x^{n} and T_{k+1}, we obtain
$k=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is

$$
\begin{align*}
{ }^{2 n-1} C_{n} & =\frac{(2 n-1)!}{n!(2 n-1-n)!}=\frac{(2 n-1)!}{n!(n-1)!} \\
& =\frac{2 n \cdot(2 n-1)!}{2 n \cdot n!(n-1)!}=\frac{(2 n)!}{2 \cdot n!n!}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] \tag{2}
\end{align*}
$$

From (1) and (2), it is observed that

$$
\begin{aligned}
& \frac{1}{2}\left({ }^{2 n} C_{n}\right)={ }^{2 n-1} C_{n} \\
& \Rightarrow{ }^{2 n} C_{n}=2\left({ }^{2 n-1} C_{n}\right)
\end{aligned}
$$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$. Hence, proved.

Q12 :

Find a positive value of \boldsymbol{m} for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

Answer :

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.
Assuming that x^{2} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+x)^{m}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{m}} \mathrm{C}_{\mathrm{r}}(1)^{\mathrm{m}-\mathrm{r}}(\mathrm{x})^{r}={ }^{\mathrm{m}} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{r}
$$

Comparing the indices of x in x^{2} and in T_{r+1}, we obtain
$r=2$

Therefore, the coefficient of x^{2} is ${ }^{m} \mathrm{C}_{2}$.
It is given that the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

$$
\begin{aligned}
& \therefore \mathrm{C}_{2}=6 \\
& \Rightarrow \frac{\mathrm{~m}!}{2!(\mathrm{m}-2)!}=6 \\
& \Rightarrow \frac{\mathrm{~m}(\mathrm{~m}-1)(\mathrm{m}-2)!}{2 \times(\mathrm{m}-2)!}=6 \\
& \Rightarrow \mathrm{~m}(\mathrm{~m}-1)=12 \\
& \Rightarrow \mathrm{~m}^{2}-\mathrm{m}-12=0 \\
& \Rightarrow \mathrm{~m}^{2}-4 \mathrm{~m}+3 \mathrm{~m}-12=0 \\
& \Rightarrow \mathrm{~m}(\mathrm{~m}-4)+3(\mathrm{~m}-4)=0 \\
& \Rightarrow(\mathrm{~m}-4)(\mathrm{m}+3)=0 \\
& \Rightarrow(\mathrm{~m}-4)=0 \text { or }(\mathrm{m}+3)=0 \\
& \Rightarrow \mathrm{~m}=4 \text { or } \mathrm{m}=-3
\end{aligned}
$$

Thus, the positive value of m, for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 , is 4 .

Exercise Miscellaneous : Solutions of Questions on Page Number : 175
Q1 :

Find a, band n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729, 7290 and 30375,respectively.

Answer :

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$.
The first three terms of the expansion are given as 729,7290 , and 30375 respectively.
Therefore, we obtain
$\mathrm{T}_{1}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}-0} \mathrm{~b}^{0}=\mathrm{a}^{\mathrm{n}}=729$
$\mathrm{T}_{2}={ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}^{1}=\mathrm{na}^{\mathrm{n}-1} \mathrm{~b}=7290$
$\mathrm{T}_{3}={ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}=\frac{\mathrm{n}(\mathrm{n}-1)}{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}=30375$
Dividing (2) by (1), we obtain

$$
\begin{align*}
& \frac{n a^{n-1} b}{a^{n}}=\frac{7290}{729} \\
& \Rightarrow \frac{\mathrm{nb}}{\mathrm{a}}=10 \tag{4}
\end{align*}
$$

Dividing (3) by (2), we obtain
$\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}}{2 \mathrm{na} \mathrm{a}^{\mathrm{n}-\mathrm{b}} \mathrm{b}}=\frac{30375}{7290}$
$\Rightarrow \frac{(\mathrm{n}-1) \mathrm{b}}{2 \mathrm{a}}=\frac{30375}{7290}$
$\Rightarrow \frac{(\mathrm{n}-1) \mathrm{b}}{\mathrm{a}}=\frac{30375 \times 2}{7290}=\frac{25}{3}$
$\Rightarrow \frac{\mathrm{nb}}{\mathrm{a}}-\frac{\mathrm{b}}{\mathrm{a}}=\frac{25}{3}$
$\Rightarrow 10-\frac{\mathrm{b}}{\mathrm{a}}=\frac{25}{3}$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=10-\frac{25}{3}=\frac{5}{3}$
From (4) and (5), we obtain
$\mathrm{n} \cdot \frac{5}{3}=10$
$\Rightarrow \mathrm{n}=6$
Substituting $n=6$ in equation (1), we obtain
$a^{6}=729$
$\Rightarrow \mathrm{a}=\sqrt[6]{729}=3$
From (5), we obtain
$\frac{\mathrm{b}}{3}=\frac{5}{3} \Rightarrow \mathrm{~b}=5$
Thus, $a=3, b=5$, and $n=6$.

Q2 :
Find aif the coefficients of \boldsymbol{x}^{2} and \boldsymbol{x}^{3} in the expansion of $(3+a x)^{9}$ are equal.

Answer :

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Assuming that x^{2} occurs in the $(r+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}}(3)^{9-r}(\mathrm{ax})^{r}={ }^{9} \mathrm{C}_{\mathrm{r}}(3)^{9-r} \mathrm{a}^{r} \mathrm{x}^{\mathrm{r}}
$$

Comparing the indices of x in x^{2} and in T_{r+1}, we obtain
$r=2$

Thus, the coefficient of x^{2} is

$$
{ }^{9} \mathrm{C}_{2}(3)^{9-2} \mathrm{a}^{2}=\frac{9!}{2!7!}(3)^{7} \mathrm{a}^{2}=36(3)^{7} \mathrm{a}^{2}
$$

Assuming that x^{3} occurs in the $(k+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain

$$
\mathrm{T}_{\mathrm{k}+1}={ }^{9} \mathrm{C}_{\mathrm{k}}(3)^{9-\mathrm{k}}(\mathrm{ax})^{\mathrm{k}}={ }^{9} \mathrm{C}_{\mathrm{k}}(3)^{9-\mathrm{k}} \mathrm{a}^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}
$$

Comparing the indices of x in x^{3} and in T_{k+1}, we obtain
$k=3$
Thus, the coefficient of x^{3} is

$$
{ }^{9} \mathrm{C}_{3}(3)^{9-3} \mathrm{a}^{3}=\frac{9!}{3!6!}(3)^{6} \mathrm{a}^{3}=84(3)^{6} \mathrm{a}^{3}
$$

It is given that the coefficients of x^{2} and x^{3} are the same.

$$
\begin{aligned}
& 84(3)^{6} \mathrm{a}^{3}=36(3)^{7} \mathrm{a}^{2} \\
& \Rightarrow 84 \mathrm{a}=36 \times 3 \\
& \Rightarrow \mathrm{a}=\frac{36 \times 3}{84}=\frac{104}{84} \\
& \Rightarrow \mathrm{a}=\frac{9}{7}
\end{aligned}
$$

Thus, the required value of a is $\frac{9}{7}$

Q3 :
Find the coefficient of x^{5} in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.

Answer :
Using Binomial Theorem, the expressions, $(1+2 x)^{6}$ and $(1-x)^{7}$, can be expanded as

$$
\begin{aligned}
(1+2 x)^{6}= & { }^{6} \mathrm{C}_{0}+{ }^{6} \mathrm{C}_{1}(2 x)+{ }^{6} \mathrm{C}_{2}(2 x)^{2}+{ }^{6} \mathrm{C}_{3}(2 x)^{3}+{ }^{6} \mathrm{C}_{4}(2 x)^{4} \\
& +{ }^{6} \mathrm{C}_{5}(2 x)^{5}+{ }^{6} \mathrm{C}_{6}(2 x)^{6} \\
= & 1+6(2 x)+15(2 x)^{2}+20(2 x)^{3}+15(2 x)^{4}+6(2 x)^{5}+(2 x)^{6} \\
= & 1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}
\end{aligned}
$$

$$
\begin{aligned}
&(1-x)^{7}={ }^{7} \mathrm{C}_{0}-{ }^{7} \mathrm{C}_{1}(x)+{ }^{7} \mathrm{C}_{2}(x)^{2}-{ }^{7} \mathrm{C}_{3}(x)^{3}+{ }^{7} \mathrm{C}_{4}(x)^{4} \\
& \quad-{ }^{7} \mathrm{C}_{5}(x)^{5}+{ }^{7} \mathrm{C}_{6}(x)^{6}-{ }^{7} \mathrm{C}_{7}(x)^{7} \\
&= 1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7} \\
& \therefore(1+2 x)^{6}(1-x)^{7} \\
&=\left(1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}\right)\left(1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}\right)
\end{aligned}
$$

The complete multiplication of the two brackets is not required to be carried out. Only those terms, which involve x^{5}, are required.

The terms containing x^{5} are

$$
\begin{aligned}
& 1\left(-21 x^{5}\right)+(12 x)\left(35 x^{4}\right)+\left(60 x^{2}\right)\left(-35 x^{3}\right)+\left(160 x^{3}\right)\left(21 x^{2}\right)+\left(240 x^{4}\right)(-7 x)+\left(192 x^{5}\right)(1) \\
& =171 x^{5}
\end{aligned}
$$

Thus, the coefficient of x^{5} in the given product is 171 .

Q4 :
If \boldsymbol{a} and \boldsymbol{b} are distinct integers, prove that $\boldsymbol{a} \boldsymbol{-} \boldsymbol{b}$ is a factor of $\boldsymbol{a}^{\boldsymbol{n}} \boldsymbol{-} \boldsymbol{b}^{n}$, whenever \boldsymbol{n} is a positive integer.
[Hint: write $a^{n}=(a-b+b)^{n}$ and expand]

Answer :

In order to prove that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, it has to be proved that $a^{n}-b^{n}=k(a-b)$,
where k is some natural number
It can be written that, $a=a-b+b$

$$
\begin{aligned}
& \therefore a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n} \\
& ={ }^{n} \mathrm{C}_{0}(a-b)^{n}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-1} b+\ldots+{ }^{n} \mathrm{C}_{n-1}(a-b) b^{n-1}+{ }^{n} \mathrm{C}_{n} b^{n} \\
& =(a-b)^{n}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-1} b+\ldots+{ }^{n} \mathrm{C}_{n-1}(a-b) b^{n-1}+b^{n} \\
& \Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-2} b+\ldots+{ }^{n} \mathrm{C}_{n-1} b^{n-1}\right] \\
& \Rightarrow a^{n}-b^{n}=k(a-b)
\end{aligned}
$$

where, $k=\left[(a-b)^{n-1}+{ }^{n} \mathrm{C}_{1}(a-b)^{n-2} b+\ldots+{ }^{n} \mathrm{C}_{n-1} b^{n-1}\right]$ is a natural number
This shows that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, where n is a positive integer

Q5 :
Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$

Answer :

Firstly, the expression $(a+b)^{6}-(a-b)^{6}$ is simplified by using Binomial Theorem.
This can be done as

$$
\begin{aligned}
&(\mathrm{a}+\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{a}^{1} \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6} \\
&=\mathrm{a}^{6}+6 \mathrm{a}^{5} \mathrm{~b}+15 \mathrm{a}^{4} \mathrm{~b}^{2}+20 \mathrm{a}^{3} \mathrm{~b}^{3}+15 \mathrm{a}^{2} \mathrm{~b}^{4}+6 \mathrm{ab}^{5}+\mathrm{b}^{6} \\
&(\mathrm{a}-\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}-{ }^{6} \mathrm{C}_{5} \mathrm{a}^{5} \mathrm{~b}^{6}+{ }_{6} \mathrm{~b}^{6} \\
&=\mathrm{a}^{6}-6 \mathrm{a}^{5} \mathrm{~b}+15 \mathrm{a}^{4} \mathrm{~b}^{2}-20 \mathrm{a}^{3} \mathrm{~b}^{3}+15 \mathrm{a}^{2} \mathrm{~b}^{4}-6 \mathrm{ab}^{5}+\mathrm{b}^{6} \\
& \therefore(\mathrm{a}+\mathrm{b})^{6}-(\mathrm{a}-\mathrm{b})^{6}=2\left[6 \mathrm{a}^{5} \mathrm{~b}+20 \mathrm{a}^{3} \mathrm{~b}^{3}+6 \mathrm{ab}^{5}\right]
\end{aligned}
$$

Putting $\mathrm{a}=\sqrt{3}$ and $\mathrm{b}=\sqrt{2}$, we obtain

$$
\begin{aligned}
(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6} & =2\left[6(\sqrt{3})^{5}(\sqrt{2})+20(\sqrt{3})^{3}(\sqrt{2})^{3}+6(\sqrt{3})(\sqrt{2})^{5}\right] \\
& =2[54 \sqrt{6}+120 \sqrt{6}+24 \sqrt{6}] \\
& =2 \times 198 \sqrt{6} \\
& =396 \sqrt{6}
\end{aligned}
$$

Q6:

Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$.

Answer :

Firstly, the expression $(x+y)^{4}+(x-y)^{4}$ is simplified by using Binomial Theorem.
This can be done as

$$
\begin{aligned}
&(x+y)^{4}={ }^{4} C_{0} x^{4}+{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}+{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4} \\
&=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
&(x-y)^{4}={ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}-{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4} \\
&=x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4} \\
& \therefore(x+y)^{4}+(x-y)^{4}=2\left(x^{4}+6 x^{2} y^{2}+y^{4}\right)
\end{aligned}
$$

Putting $\mathrm{x}=\mathrm{a}^{2}$ and $\mathrm{y}=\sqrt{\mathrm{a}^{2}-1}$, we obtain

$$
\begin{aligned}
\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4} & =2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+\left(\sqrt{a^{2}-1}\right)^{4}\right] \\
& =2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right] \\
& =2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right] \\
& =2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right] \\
& =2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2
\end{aligned}
$$

Q7 :
Find an approximation of $(0.99)^{5}$ using the first three terms of its expansion.

Answer:

$$
\begin{aligned}
& 0.99=1-0.01 \\
& \begin{aligned}
\therefore(0.99)^{5} & =(1-0.01)^{5} \\
& ={ }^{5} \mathrm{C}_{0}(1)^{5}-{ }^{5} \mathrm{C}_{1}(1)^{4}(0.01)+{ }^{5} \mathrm{C}_{2}(1)^{3}(0.01)^{2} \\
& =1-5(0.01)+10(0.01)^{2} \\
& =1-0.05+0.001 \\
& =1.001-0.05 \\
& =0.951
\end{aligned} \quad \text { (Approximately) }
\end{aligned}
$$

Thus, the value of $(0.99)^{5}$ is approximately 0.951

Q8 :
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$

Answer :

In the expansion, $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$,
Fifth term from the beginning $={ }^{n} \mathrm{C}_{4} a^{\mathrm{n}-4} \mathrm{~b}^{4}$
Fifth term from the end $={ }^{n} C_{n-4} a^{4} b^{n-4}$
Therefore, it is evident that in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$, the fifth term from the beginning
is ${ }^{n} C_{4}(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}$ and the fifth term from the end is ${ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}-4}$.
${ }^{n} C_{4}(\sqrt[4]{2})^{\mathrm{n}-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}={ }^{\mathrm{n}} \mathrm{C}_{4} \frac{(\sqrt[4]{2})^{\mathrm{n}}}{(\sqrt[4]{2})^{4}} \cdot \frac{1}{3}={ }^{\mathrm{n}} \mathrm{C}_{4} \frac{(\sqrt[4]{2})^{\mathrm{n}}}{2} \cdot \frac{1}{3}=\frac{\mathrm{n}!}{6.4!(\mathrm{n}-4)!}(\sqrt[4]{2})^{\mathrm{n}}$
${ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}={ }^{n} C_{n-4} \cdot 2 \cdot \frac{(\sqrt[4]{3})^{4}}{(\sqrt[4]{3})^{n}}={ }^{n} C_{n-4} \cdot 2 \cdot \frac{3}{(\sqrt[4]{3})^{n}}=\frac{6 n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[4]{3})^{n}}$
It is given that the ratio of the fifth term from the beginning to the fifth term from the end is $\sqrt{6}: 1$. Therefore, from (1) and (2), we obtain

$$
\begin{aligned}
& \frac{n!}{6.4!(n-4)!}(\sqrt[4]{2})^{n}: \frac{6 n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1 \\
& \Rightarrow \frac{(\sqrt[4]{2})^{n}}{6}: \frac{6}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1 \\
& \Rightarrow \frac{(\sqrt[4]{2})^{n}}{6} \times \frac{(\sqrt[4]{3})^{n}}{6}=\sqrt{6} \\
& \Rightarrow(\sqrt[4]{6})^{n}=36 \sqrt{6} \\
& \Rightarrow 6^{\frac{n}{4}}=6^{\frac{5}{2}} \\
& \Rightarrow \frac{n}{4}=\frac{5}{2} \\
& \Rightarrow n=4 \times \frac{5}{2}=10
\end{aligned}
$$

Thus, the value of n is 10 .

Q9:

Expand using Binomial Theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$.

Answer:

Using Binomial Theorem, the given expression $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}$ can be expanded as

$$
\begin{align*}
& {\left[\left(1+\frac{x}{2}\right)-\frac{2}{x}\right]^{4}} \\
& ={ }^{4} C_{0}\left(1+\frac{x}{2}\right)^{4}-{ }^{4} C_{1}\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+{ }^{4} C_{2}\left(1+\frac{x}{2}\right)^{2}\left(\frac{2}{x}\right)^{2}-{ }^{4} C_{3}\left(1+\frac{x}{2}\right)\left(\frac{2}{x}\right)^{3}+{ }^{4} C_{4}\left(\frac{2}{x}\right)^{4} \\
& =\left(1+\frac{x}{2}\right)^{4}-4\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+6\left(1+x+\frac{x^{2}}{4}\right)\left(\frac{4}{x^{2}}\right)-4\left(1+\frac{x}{2}\right)\left(\frac{8}{x^{3}}\right)+\frac{16}{x^{4}} \\
& =\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{24}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}-\frac{16}{x^{2}}+\frac{16}{x^{4}} \\
& =\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \tag{1}
\end{align*}
$$

Again by using Binomial Theorem, we obtain

$$
\begin{align*}
\left(1+\frac{x}{2}\right)^{4} & ={ }^{4} C_{0}(1)^{4}+{ }^{4} C_{1}(1)^{3}\left(\frac{x}{2}\right)+{ }^{4} C_{2}(1)^{2}\left(\frac{x}{2}\right)^{2}+{ }^{4} C_{3}(1)^{1}\left(\frac{x}{2}\right)^{3}+{ }^{4} C_{4}\left(\frac{x}{2}\right)^{4} \\
& =1+4 \times \frac{x}{2}+6 \times \frac{x^{2}}{4}+4 \times \frac{x^{3}}{8}+\frac{x^{4}}{16} \\
& =1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16} \\
\left(1+\frac{x}{2}\right)^{3} & ={ }^{3} C_{0}(1)^{3}+{ }^{3} C_{1}(1)^{2}\left(\frac{x}{2}\right)+{ }^{3} C_{2}(1)\left(\frac{x}{2}\right)^{2}+{ }^{3} C_{3}\left(\frac{x}{2}\right)^{3} \\
& =1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8} \tag{3}
\end{align*}
$$

From(1), (2), and (3), we obtain

$$
\begin{aligned}
& {\left[\left(1+\frac{x}{2}\right)-\frac{2}{x}\right]^{4}} \\
& =1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}\left(1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8}\right)+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \\
& =1+2 x+\frac{3}{2} x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}-12-6 x-x^{2}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \\
& =\frac{16}{x}+\frac{8}{x^{2}}-\frac{32}{x^{3}}+\frac{16}{x^{4}}-4 x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-5
\end{aligned}
$$

Q10 :

Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem.

Answer :

Using Binomial Theorem, the given expression $\left(3 \mathrm{x}^{2}-2 \mathrm{ax}+3 \mathrm{a}^{2}\right)^{3}$ can be expanded as

$$
\begin{align*}
& {\left[\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)+3 \mathrm{a}^{2}\right]^{3}} \\
& ={ }^{3} \mathrm{C}_{0}\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+{ }^{3} \mathrm{C}_{1}\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{2}\left(3 \mathrm{a}^{2}\right)+{ }^{3} \mathrm{C}_{2}\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)\left(3 \mathrm{a}^{2}\right)^{2}+{ }^{3} \mathrm{C}_{3}\left(3 \mathrm{a}^{2}\right)^{3} \\
& =\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+3\left(9 \mathrm{x}^{4}-12 \mathrm{ax}^{3}+4 \mathrm{a}^{2} \mathrm{x}^{2}\right)\left(3 \mathrm{a}^{2}\right)+3\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)\left(9 \mathrm{a}^{4}\right)+27 \mathrm{a}^{6} \\
& =\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+81 \mathrm{a}^{2} \mathrm{x}^{4}-108 \mathrm{a}^{3} \mathrm{x}^{3}+36 \mathrm{a}^{4} \mathrm{x}^{2}+81 \mathrm{a}^{4} \mathrm{x}^{2}-54 \mathrm{a}^{5} \mathrm{x}+27 \mathrm{a}^{6} \\
& =\left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3}+81 \mathrm{a}^{2} \mathrm{x}^{4}-108 \mathrm{a}^{3} \mathrm{x}^{3}+117 \mathrm{a}^{4} \mathrm{x}^{2}-54 \mathrm{a}^{5} \mathrm{x}+27 \mathrm{a}^{6} \tag{1}
\end{align*}
$$

Again by using Binomial Theorem, we obtain

$$
\begin{align*}
& \left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3} \\
& ={ }^{3} \mathrm{C}_{0}\left(3 \mathrm{x}^{2}\right)^{3}-{ }^{3} \mathrm{C}_{1}\left(3 \mathrm{x}^{2}\right)^{2}(2 \mathrm{ax})+{ }^{3} \mathrm{C}_{2}\left(3 \mathrm{x}^{2}\right)(2 \mathrm{ax})^{2}-{ }^{3} \mathrm{C}_{3}(2 \mathrm{ax})^{3} \\
& =27 \mathrm{x}^{6}-3\left(9 \mathrm{x}^{4}\right)(2 \mathrm{ax})+3\left(3 \mathrm{x}^{2}\right)\left(4 \mathrm{a}^{2} \mathrm{x}^{2}\right)-8 \mathrm{a}^{3} \mathrm{x}^{3} \\
& =27 \mathrm{x}^{6}-54 \mathrm{ax}{ }^{5}+36 \mathrm{a}^{2} \mathrm{x}^{4}-8 \mathrm{a}^{3} \mathrm{x}^{3} \tag{2}
\end{align*}
$$

From (1) and (2), we obtain

$$
\begin{aligned}
& \left(3 x^{2}-2 a x+3 a^{2}\right)^{3} \\
& =27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6} \\
& =27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}
\end{aligned}
$$

