JNU MCA - 2006

1. In a triangle with one angle $2\pi/3$, the lengths of the sides form an AP. If the length of the gre cm, the radius of the circumcircle of the triangle is			P. If the length of the greatest side is 7	
	$(a) \frac{7\sqrt{3}}{3}$	$\text{(b) } \frac{5\sqrt{3}}{3}$	(c) $\frac{2\sqrt{3}}{3}$	$(d)\frac{\sqrt{3}}{3}$
2 .	If in a triangle <i>AB</i>	C , $\sin A$, $\sin B$, $\sin C$ are in	AP, then	
	(a) the altitudes ar	re in AP	(b) the altitudes are	in HP
	(c) the altitudes ar	re in GP	(d) None of these	
3.	$\lim_{n\to\infty} (2k^{1/n} - 1)^n \text{ is}$	s equal to		
	(a) k^2	(b) 2 <i>k</i>	(c) $2 \ln (k)$	(d) None of these
4.		tor along which the funct	ion $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2} de$	ecreases most rapidly at the point (1, 1)
	is given by	(1) (1) [5]	() (1/5 1/5)	(1) (1) 5 1 5
		(b) $(1/\sqrt{2}, -1/\sqrt{2})$	(c) $(-1/\sqrt{2}, -1/\sqrt{2})$	(d) $(-1/\sqrt{2}, 1/\sqrt{2})$
5 .	The function $f:R$	$^{2} \rightarrow R$ is defined by		
		$f\left(x,y\right)\left\{\frac{\mathrm{si}}{x}\right.$	$\frac{\ln(xy^{2})}{x^{2} + y^{2}}, (x, y) \neq (0, 0)$ $0, (x, y) = (0, 0)$	
	(a) is differentiabl			t not differentiable at (0, 0)
	(c) is not continuo	` '	` '	partial derivatives at (0, 0)
			$\int f(b) b^2$	· b 1
6.	Let $f(x) = x^3$, $x \in [a, b]$ and the value of the a		e determinant $\begin{vmatrix} f(a) & a^2 \\ f(a) & a^2 \end{vmatrix}$	$\begin{bmatrix} a & 1 \\ a & 1 \end{bmatrix}$ is equal to (-16) Then $b-a$ is
	, , ,		$\begin{array}{c c} f'(a) & 2a \\ f''(a) & 2 \end{array}$	$\begin{bmatrix} a & 1 & 0 \\ 0 & 0 \end{bmatrix}$
	equal to			·
	(a) 0	(b) 1	(c) 2	(d) 4
7.	For the integral \int_0°	$\int_{0}^{\infty} \tan^{n} x dx$ is equal to $(-\pi)^{2}$, the least positive value	of n is equal to
	(a) 3/2	(b) 5/2	(c) 3	(d) 5

8.	Let y be an implicit	Let y be an implicit function of x given by $x^4 - axy^2 - a^3y = 0$. If y is maximum, then				
	(a) $3xy + 4a^2 = 0$	(b) $3xy - 4a^2 = 0$	(c) $4x^4 + a^3y = 0$	(d) 3xy + 4a = 0		
9.		n implicit function of x nous function of degree	, y for all $x > 0$, $y > 0$, g	given by $xyz^2 + x^2y - xz^4 + y^2z^2 = 0$.		
	(a) 1	(b) 2	(c) 1/2	(d) 1/4		
10 .		equired for a 256 K work	<u>-</u>			
	(a) 8	(b) 10	(c) 18	(d) 20		
11.	(a) entirely determined(b) determined by the(c) unpredictable(d) not possible at a		as past state			
12 .	If $\sin(\alpha + \beta) = 1$ and	$d \sin (\alpha - \beta) = 1/2$ where $d \sin (\alpha - \beta) = 1/2$	$\alpha, \beta \in [0, \pi/2]$, then $\frac{\tan (\alpha)}{\tan (\alpha)}$	$(\frac{\alpha + 2\beta}{\alpha + \beta})$ is equal to		
	(a) 1	(b) 2	(c) 3	(d) 4		
13 .	Propositional formu	$ala P \wedge (Q \vee R) \rightarrow [(P \wedge Q)]$	$(P \wedge R)$] is a			
	(a) tautology	(b) contradiction	(c) contingency	(d) None of these		
14.	The solution of the differential equation $\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$ is					
	(a) $x = c \exp[\cot^{-1}($	y/x)]	(b) $x = c \exp [\sin^{-1}(y)]$	y/x)]		
	(c) $x = c \exp \left[\tan^{-1} \right]$	(y/x)	(d) None of these			
15 .	If the random variables, X , Y and Z have the mean $\mu_X = 2$, $\mu_Y = -3$ and $\mu_Z = 2$, the variances $\sigma_X^2 = 1$, $\sigma_Y^2 = 5$ and $\sigma_Z^2 = 2$ and covariaces $\text{cov}(X, Y) = -2 \text{ cov}(X, Z) = -1$ and $\text{cov}(Y, Z) = 1$, the variance of $W = 3X - Y + 2Z$ is					
	(a) 17	(b) 18	(c) 20	(d) None of these		
		a^2 a	1			
16 .	The determinant $\begin{vmatrix} \cos(nx) & \cos(n+1)x & \cos(n+2)x \\ \sin(nx) & \sin(n+1)x & \sin(n+2)x \end{vmatrix}$ is					
	independent of					
	(a) <i>n</i>	(b) <i>a</i>	(c) x	(d) None of these		
17.	If a, b and c are $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+c}{c}$		numbers, then the	minimum value of the expression		
	(a) 1	(b) 2	(c) 3	(d) None of these		
18 .	If p , q are r are any	real numbers, then				
	(a) $\max(p, q) < \max(p, q, r)$ (b) $\min(p, q) = \frac{1}{2}(p + q - p - q)$					
19.	(c) min $(p, q) < \min$ A computationally $\frac{1}{x_{j+1}} = \frac{1}{x_j} + \frac{x_{j+1} - x_{j+1}}{K(I)}$	efficient way to compute	(d) None of above the sample mean of the	e data $x_1, x_2, \dots x_n$ is an follows		
	07					
	Then $K(j)$ is equal to (a) j	(b) $j + 1$	(c) $j(j-1)$	(d) j^{-1}		

32.	(a) $2^k - 1$	inary tree. The number $(b) 2^k$	(c) $2^{k-1} - 1$	(d) 2^{k-1}	
33.	Derivative of $\sin^{-1}\left\{\frac{2}{1+1}\right\}$	$\left\{ \frac{2x}{1+x^2} \right\}$ w.r.t. $\cos^{-1} \left\{ \frac{1-x^2}{1+x^2} \right\}$	$\left\{\frac{2}{2}\right\}$ is		
	(a) - 2	(b) – 1	(c) 1	(d) 2	
34.	Ç =	$\left\{ \dots + \frac{n}{1 - n^2} \right\}$ is equal to			
	(a) 0	(b) $-\frac{1}{2}$	(c) $\frac{1}{2}$	(d) None of these	
35.	Backward Euler metho	d for solving differentia	l equation $\frac{dy}{dx} = f(x, y)$	is	
	(a) $y_{n-1} = y_n + hf(x_n)$ (c) $y_{n+1} = y_n + hf(x_n)$	$\begin{cases} y_{n+1}, y_{n+1} \\ y_n \end{cases}$ $\int_{0}^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx \text{ is}$	(b) $y_{n-1} = y_{n-1} + 2hf$ (d) $y_{n+1} = (1+h) f(x_n)$		
36.	The value of integral \int	$\int_{0}^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx \text{ is}$	3		
	(a) $\frac{\pi}{4}$	_	(c) π	(d) None of these	
37 .	If $y = ae^{-kt}\cos(pt + c)$) and			
	$\frac{d^2y}{dx^2} + 2k\frac{dy}{dx} + n^2y = 0$), then n^2 equals			
	(a) $p^2 + k^2$	(b) p^2	(c) k^2	(d) $p^2 - k^2$	
38.					
(a) f is a function returning integer value (b) f is a function returning pointer to integer (c) f is pointer to a function returning integer (d) It is not a valid declaration					
39 .					
	(a) the number of statements in a program				
	(b) the number of instructions in a process				
	(c) the address of the next instruction to be executed				
40		irst instruction of proces	SS		
40 .	$(Z + X) (Z + \overline{X} + Y)$ is (a) $(Z + X) (Z + Y)$	-	(c) $X \cdot Z + Y$	(d) $ZX + ZY + XY$	
41.				Then the sequence (c_n) converges	
	to	• 0			
	(a) $\sqrt{2}$	(b) 1	(c) 2	(d) None of these	
42 .	The value of the integr	$\operatorname{ral} \int_{0}^{1} y^{2} \left(\ln \frac{1}{y^{3}} \right)^{-1/2} dy i$	is equal to		
	(a) $\frac{1}{3}$	(b) $\sqrt{\pi}$	(c) $\frac{\sqrt{\pi}}{3}$	(d) $\frac{\pi}{3}$	
43 .	The number of solution	ns to the equation $z^2 + 1$	$\overline{z} = 0$ is		
	(a) 1	(b) 2	(c) 3	(d) 4	
	If $\frac{2\sin\alpha}{1+\cos\alpha+\sin\alpha}=y$, then $\frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$ is equal to				
44.	If $\frac{2 \sin \alpha}{1 + \cos \alpha + \sin \alpha} = y$	$\frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$	is equal to		
44.	If $\frac{2 \sin \alpha}{1 + \cos \alpha + \sin \alpha} = y$ (a) $1/y$	7, then $\frac{1 - \cos \alpha + \sin \alpha}{1 + \sin \alpha}$ (b) y	is equal to (c) 1 – <i>y</i>	(d) $1 + y$	

45 .	If $\sin \theta$ and $\cos \theta$ are the	ne roots of the equation o	$ax^2 - bx + c = 0 \text{ then } a, b$	and c satisfy the relation
	(a) $a^2 + b^2 + 2ac = 0$	(b) $a^2 - b^2 + 2ac = 0$	(c) $a^2 + c^2 + 2ab = 0$	(d) $a^2 - b^2 - 2ac = 0$
46 .	The number of solutio	ns of the equation sin 52	$x\cos 3x = \sin 6x\cos 2x$ in	n the interval $[0, \pi]$ is
	(a) 3	(b) 4	(c) 5	(d) 6
47 .			_	ane is 1, then its locus is
	(a) a square	(b) a circle	(c) a straight line	(d) two intersecting lines
48.			parameter λ with p.d.f.	$f(x) = \lambda e^{-\lambda x} \text{if} x \ge 0 = 0 \text{if} x < 0,$
	identify the correct on $(a) P(X > s + t) - P(X)$	(X > s) P(X > t)	(b) $P(X > s + t) - P(X)$	(X > c) + P(X > t)
		P(X = s) P(X = t)		
49 .				e equation of the circle through their
	points of intersection a		C	
	(a) $x^2 + y^2 - 6x + 4 =$	0	(b) $x^2 + y^2 - 3x + 1 =$	0
	(c) $x^2 + y^2 - 4y + 2 =$	0	(d) None of these	
50 .	There exists a function	f(x) satisfying $f(0) = 1$	1, $f(0) = -1$, $f(x) > 0$ for	all x, and
	(a) $f''(x) > 0$ for all x		(b) $-1 < f''(x) < 0$ for a	$\operatorname{all} x$
	(c) $-2 < f''(x) < -1$ for		(d) $f''(x) < -$ for all x	
51 .	The value of $\int_{-\infty}^{\infty} \frac{\sin x}{(5-3)^2}$	$\frac{3\theta}{\cos\theta}$ $d\theta$ is equal to		
	(a) infinity	(b) 2/3	(c) 1/3	(d) None of these
	•	•		• /
52 .				$(1, 1, 0)$ and $\overrightarrow{\mathbf{b}} = (0, 1, 1)$ is
5 0	(a) one	(b) two	(c) three	(d) None of these
53.	A B R	ruth Table : (<i>R</i> is the res	uitj	
	0 0 1			
	0 1 0			
	1 0 1			
	1 1 1			
	Above TT corresponds	_	() 4	(1) 27 (1)
5 4	(a) $A \rightarrow B$	(b) $B \to A$	(c) $A \to B \lor B \to A$	(d) None of these
54 .	int array [5], i, *p;	ut of following program	segment:	
	for $(i = 0; i < 5; 1 + +)$			
	array[i] = i;			
	ip = array			
	print $f(''\%d \setminus n'', *(ip - (a)))$		(a) Cambaga	(d) Name of these
	(a) 3	(b) 6	(c) Garbage	(d) None of these
55 .	If the vectors $(a, 1, i)$,	(1, b, 1) and (1, 1, c) (a	$\neq b \neq c \neq 1$) are coplan	ar, then $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is equal
	to			
	(a) 3	(b) 2	(c) 1	(d) 0
56 .	The number of terms decimal places at $x = 3$	_	ies such that their sum	gives the value of e^x correct to six
	(a) 6	(b) 8	(c) 10	(d) 14

57 .	Newton's iterative for					
	(a) $x_{n+1} = x_n (2 - Nx)$	(a) (b) $x_{n+1} = x_n (2 + N)$	$J(x_n)$ (c) $x_{n+1} = 2\left(x_n + \frac{N}{x_n}\right)$	(d) None of these		
58 .	The equations $2x + 3y$ (a) $\lambda = 5$	y + 5z = 9; 7x + 3y - 2z (b) $\mu = 5$	$z = 8; 2x + 3y + \lambda z = \mu \text{ ha}$ (c) $\lambda = \mu = 5$	ve infinite number of solutions if (d) None of these		
59 .			action given by $f(x, y) =$	kxy for $x = 1$, 2, 3 can serve as a joint		
	(a) $\frac{1}{36}$	(b) 1	(c) $\frac{1}{9}$	(d) 8		
60 .	S is defined as $S = x $	1 1		d the value of x for which S is minium		
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	(d) $\frac{78}{80}$		
61 .	The centre of a circle	passing through the p	oint (0, 1) and touching t	he curve $y = x^2$ at (2, 4) is		
	$(a)\left(\frac{-16}{5},\frac{27}{10}\right)$	$(b)\left(\frac{-16}{7},\frac{5}{10}\right)$	$(c)\left(\frac{-16}{5},\frac{53}{10}\right)$	(d) None of these		
62 .	If $u = \cos(x + y) + \cos(x - y)$, then which of the following is/are true?					
	(a) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$	(b) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial x \partial y}$	(c) $\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y \partial x}$			
	(a) (a) only	(b) (b) only	(c) (a) and (b) only	(d) (a) and (c) only		
63 .		n for 8086 microproces	sor performs the function			
	(a) destructive AND		(b) non-destructive A	ND		
	(c) wait for an event		(d) None of these	∞		
64.	Let $s_n = \sum_{k=0}^{\infty} f_k^2$, f_k is equal to	the <i>k</i> th Fibonacci num	$f_0 = f_1 = 1, f_{n+1} = f$	$_{n}+f_{n-1}$. Then the value $\sum_{n=0}^{\infty}(-1)^{n}s_{n}$ is		
	(a) 1/2	(b) $\sqrt{5}/2$	(c) $(\sqrt{5} - 1)/2$	(d) None of these		
65						
65 .	The real value of 9 to	r which the expression	$1 \frac{1 + i \cos \theta}{1 - 2i \cos \theta}$ is a real num	iber is		
	(a) $2n\pi$	(b) $(2n + 1) \pi$				
66 .	If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$, then which of the following are true?					
	(i) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0$ (ii) $\cos (\alpha + \beta) + \cos (\beta + \gamma) + \cos (\gamma + \alpha) = 0$					
	(iii) $\sin 2\alpha + \sin 2\beta + \sin 2\beta$	$\sin 2\gamma = 0$	(b) (ii) and (iii) only			
	(a) (i) and (ii) only (c) (iii) and (i) only		(b) (ii) and (iii) only (d) (i), (ii) and (iii)			
67 .		that $\frac{2x-1}{2x^3+3x^2+x} >$				
	(a) $(-\infty, -1)$	$(b) (-\infty, 0)$	(c) $(-\infty, \infty)$	(d) None of above		
68.	, , ,		$x + 3\cos^{10} x + 3\cos^8 x +$			
	(a) 0	(b) 1	(c) - 1	(d) None of these		
69 .	A variable chord is d	rawn through the origi	in to the circle $x^2 + y^2$	2ax = 0. The locus of the centre of the		
	circle drawn on this	chord as diameter is				
	(a) $x^2 + y^2 + ax = 0$		(b) $x^2 + y^2 + ay = 0$			
	(c) $x^2 + y^2 - ax = 0$		(d) $x^2 + y^2 - ay = 0$			

70 .	The value of $\int_0^\infty \frac{\sin x}{x} dx$ is						
	(a) infinity	(b) $\frac{\pi}{2}$	(c) π	(d) None of these			
71 .	Which of the following	g pairs is logically equiv	alent ?				
	(a) $A \rightarrow B$ and $\neg A \lor B$		(b) $\neg (A \lor B)$ and $\neg A \land$	$\neg B$			
	(c) $(A \vee \neg B) \rightarrow C$ and		(d) All of above				
72 .	*	What will be the output of following program segment ?					
	int ij;						
	j = 0 for $(i = 1; i < 10; i + +)$	1					
	$\{$						
	continue;						
	++j;						
	print f (% d'' , j);	_					
	(a) 0	(b) 55	(c) 10	(d) None of these			
73.	Hexadecimal D9 is equ		() 101	(1) 040			
	(a) 113	(b) 331	(c) 131	(d) 313			
74 .	DMA is reponsible for						
	(a) data movement in r(b) data movement in A						
	(c) data movement in I						
	, ,	m I/O to memory and vio	ce-versa				
75 .							
	If $ z^2 - 1 = z ^2 + 1$. th (a) straight line	(b) circle	(c) ellipse	(d) None of above			
76 .	The equation $3^{x-1} + 5^x$		(c) onipso	(a) Items of above			
	(a) no solution	(b) one solution	(c) two solutions	(d) more than two solutions			
77.	Given a statement:						
	If it rains I am not goi	ng.					
	Converse of the statement is						
	(a) If I don't go, it rains		(b) If I go it doesn't rain	1			
	(c) If I don't go it doesn		(d) None of above				
78 .	-	, find the value of stater	* * * * * * * * * * * * * * * * * * * *				
=0	(a) 0	(b) 1	(c) 3	(d) None of above			
79 .	If the lines $2(\sin A + \sin B) x - 2\sin(A - B) y = 3$ and $2(\cos A + \cos B) x + 2\cos(A - B) y = 5$ are perpendicular, then $\sin 2A + \sin 2B$ is equal to						
	(a) $\sin (A - B) - 2 \sin (A + B)$		(b) $2\sin(A - B) - \sin(A + B)$				
	(c) $\sin(2(A - B) - \sin(A + B)$		(d) $\sin(2(A-B)) - 2\sin(A+B)$				
80.				A(-36.7), $B(20.7)$ and $C(08)$, then			
	GI is equal to		-				
	(a) $\frac{\sqrt{250}}{3}$	(b) $\frac{\sqrt{205}}{3}$	(c) $\frac{\sqrt{181}}{3}$	(d) None of these			
	o .						
81.	Locus of the mid-poin	ts of the chords of the c	$ircle x^2 + y^2 = 4 which$	subtends a right angle at the centre			
	is	a 2 2 2					
	(a) x + y = 2	(b) $x^2 + y^2 = 1$	(c) $x^2 + y^2 = 2$	(d) x - y = 0			

82.	The value of $\int_{-\infty}^{\infty} \frac{1}{(5+4x+x^2)^2} dx$ is equal to				
	(a) π	(b) $\frac{\pi}{2}$	(c) infinity	(d) None of these	
83. 84.	(a) 1	(b) 2	(c) 0	D(k, 2, 5) are coplanar is $(d) - 1m the origin is 3x + y = 0, then the$	
01.		angent to the original control of the angent through the original $(b) x + 3y = 0$		(d) x + 2y = 0	
85 .	The value of $\int_0^\infty \frac{x^{p-1}}{1+x} dx$	• •	(C) X - 3y = 0	(u) $X + 2y = 0$	
00.	$\int_0^{\infty} \int_0^{\infty} \frac{1}{1+X} dx$	n, o v p v i is oquar to			
	(a) π	(b) infinity	(c) $\frac{\pi}{2}$	(d) None of above	
86.	The value of $[\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{b}]$	$-\stackrel{\rightarrow}{\mathbf{c}},\stackrel{\rightarrow}{\mathbf{c}}-\stackrel{\rightarrow}{\mathbf{a}}]$ is			
	(a) 0	(b) 1	(c) 2	(d) 3	
87.	If $z = x + iy$, $z^{1/3} = a - a$	$-ib$, $a \neq \pm ba$, $b \neq 0$, then	$\frac{x}{a} - \frac{y}{b} = k (a^2 - b^2), \text{ wh}$	here k is equal to	
	(a) 0	(b) 2	(c) 4	(d) None of these	
88.	The inequality $n! > 2^n$ (a) all $n \in N$	$^{-1}$ is true for (b) $n > 2$	(c) $n > 1$	(d) $n \notin N$	
89.	, ,	$+ 10\cos x - 6 = 0 \text{ is satis}$, ,	(d) 11 × 11	
			(c) $x = 2n\pi + \cos^{-1}(1/3)$	(d) None of these	
90.	If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two unit	vectors, then the vector	$(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{a} \times \overrightarrow{b})$ is para	llel to the vector	
	(a) $\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}}$	(b) $\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$	(c) $2\stackrel{\rightarrow}{\mathbf{a}} - \stackrel{\rightarrow}{\mathbf{b}}$	(d) $2\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$	
91.	The solution set of the	inequality $ x - 1 < 1$	- <i>x</i> is		
	(a) (1, 1)	(b) (0, ∞)	(c) $(-1, \infty)$	(d) None of these	
92 .		inequality $4^{-x+0.5} - 7.2^{-1}$			
00	(a) $(-\infty, \infty)$	(b) $(-2, \infty)$	(c) $(2, \infty)$	(d) 2, 3.5)	
93. If $x \cos \alpha + y \sin \alpha = x \cos \beta + y \sin \beta = 2a(0 < \alpha, \beta < \pi/2)$ then it is also true that (a) $\cos \alpha + \cos \beta = \frac{4ax}{x^2 + y^2}$ (b) $\cos \alpha \cos \beta = \frac{4a^2 - y^2}{x^2 + y^2}$					
				$\frac{y}{y^2}$	
	(c) $\cos \alpha \cos \beta = \frac{4ax}{x^2 + y}$.2	(d) $\cos \alpha + \cos \beta = \frac{4a^2}{x^2}$	$\frac{-y^2}{+y^2}$	
	The correct possibilities				
	(a) (a) and (b) only	(b) (c) and (d) only	(c) (a) and (c) only		
94.	The coordinates (x, y)	of a moving point P sat	isfy the equation $\frac{dx}{dt} = x$	x and $\frac{dy}{dt} = -x^2$ for all $t \ge 0$. Find an	
	-	_	es if it passes through (1,		
	(a) $y = \frac{x^2 + 7}{7}$	(b) $y = \frac{-x^2 - 7}{2}$	(c) $y = x^2 + 7$	(d) $x^2 - y^2 = 7$	
95.	The number of flip-flop be	s used to construct a ring	g counter which counts f	rom decimal one to decimal eight will	
	(a) 1	(b) 2	(c) 3	(d) 4	

96.	The straight line $y = 4x + c$ is tangent to the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$. Then c is equal to				
	(a) ± 4	(b) $\pm \sqrt{6}$	(c) ± 1	(d) $\pm \sqrt{132}$	
97 .		the curve $y = f(x)$, the	x-axis and the ordinates	$x = 1 \text{ and } x = b \text{ is } (b - 1) \sin (3b + 4).$	
	Then $f(x)$ is		(l-) -: (0 + 4)		
	(a) $(x-1)\cos(3x+4)$ (c) $\sin(3x+4)+3(x-4)$	1) $\cos(3x \pm 4)$	(b) $\sin (3x + 4)$ (d) None of these		
98.		expression $2\log_{10}(x) - \log_{10}(x)$			
00.	(a) 10	(b) -0.01	(c) 2	(d) None of these	
99.	If $y = \frac{1 + \sqrt{1 - \sin 4A}}{\sqrt{1 + \sin 4A} - 1}$,	then one of the values of	of y is		
	(a) $\tan A$	(b) cot A	(c) -tan (2 <i>A</i>)	(d) -cot A	
100.		4) $\sin x + 4 \cos x$ lies in	, , , ,	(4) 55111	
				(d) $(-2(2+\sqrt{5}), 2(2+\sqrt{5}))$	
101.		ies $\sum_{n=1}^{\infty} \left\{ a^{1/n} - \left(\frac{a^{1/n} + c}{2} \right) \right\}$			
	(a) $\alpha = bc$	(b) $a = \sqrt{bc}$	(c) $a = \sqrt{bc}$	(d) $a = b\sqrt{c}$	
102 .	The region bounded b	y the parabola $y = x^2$ are	nd the line $y = 2x$ in the	e first quadrant is revolved about the	
	y-axis to generate a sol	lid. The volume of the so	olid is equal to		
	(a) $8\pi/3$	(b) 32π/3	(c) $4\pi/3$	(d) 16 \pi/3	
103.	Let $f(t) = \int_t^t \frac{\sin tx}{x} dx$,	$t \neq 0$. Then the value of	f'(1) is equal to		
	(a) sin (1)	(b) 0	(c) $-\sin(1)$	(d) 2 sin (1)	
104.	If the area of a triangle	on the complex plane f	formed by the point z , z	+iz and iz is 50, then $ z $ is	
	(a) 1	(b) 5	(c) 10	(d) 15	
105.				$A - 5\cos A + \sin A$ is equal to	
106	(a) $-53/10$	(b) $23/10$ sin θ), then $\cos (\theta - \pi/4)$ i	(c) 37/10	(d) 7/10	
106.				(D) + 2 /5	
	$(a) \pm \frac{1}{2\sqrt{2}}$	$(b) \pm \frac{1}{\sqrt{2}}$	(c) $\pm \sqrt{2}$	(d) $\pm 2\sqrt{2}$	
107 .	The value of tan 1º tan	2º tan 89º is			
	(a) - 1	(b) 0	(c) 1	(d) None of above	
108.	If $\overrightarrow{\mathbf{A}} = (1, 1, 1)$ and $\overrightarrow{\mathbf{C}} =$	(0, 1, – 1) are given vecto	ers, then a vector $\overrightarrow{\mathbf{B}}$ satisf	fying $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{C}}$ and $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} = 3$ is	
		(b) $\left(\frac{2}{3}, \frac{5}{3}, \frac{2}{3}\right)$		(d) None of these	
109.	For a real number y , by $\frac{\tan (\pi [x - \pi])}{1 + [x]^2}$	let [y] denote the great	est integer less than or	e equal to y . Function $f(x)$ is given	
		f(x) is discontinuous at $f(x)$	some <i>x</i>		
				x) does not exist for some x	
		on $f(x)$, $f''(x)$ exists for a			
	(d) Then for the functi	on $f(x)$, $f'(x)$ exists for a	ll x but the second deriv	vative $f''(x)$ does not exist for some x	

110. Let a, b, c be non-zero real numbers such that $\int_{0}^{1} (1 + \cos^{2} x) (ax^{2} + bx + c) dx = \int_{0}^{2} (1 + \cos^{2} x) (ax^{2} + bx + c) dx$ Then the quadratic equation $ax^2 + bx + c = 0$ has (a) no root in (0, 2) (b) a double root in (0, 2) (c) two imaginary roots (d) at least one root in (0, 2) The solution of the differential equation $y(2xy + e^x) dx - e^x dy = 0$ is 111. (b) $x(y^2 + c) + e^x = 0$ (c) $y(x^2 + c) + e^x = 0$ (d) None of these (a) $x^2 + c + ve^x = 0$ **112**. The propagation delay encountered in a ripple carry adder of four-bit size, with delay of a single flip-floop as t_p will be (a) 0 (b) $t_p * 4$ (c) $t_{p}/2$ (d) $\exp(t_p)$ The Gray code equivalent of 10102 will be **113**. (a) 1111 (v) 0101 (c) 0011 (d) 1001 The 2's complement of N in n bit is 114. (b) $2^{n} - N$ (c) 2^{N} (d) N - 2**115**. What is the output of following program? # include <stdio.h> main () { int a, b, funct (int * a, int b); a = 20; b = 20;funct (&a, b); print $f(''a = \%d \ b = \%d'', a, b)$; funct(int*a, int b) *a = 10;b = b + 10;return; (a) a = 10 b = 20(b) a = 20 b = 10(c) a = 20 b = 30(d) None of these What is the output of following program? **116**. # include <stdio.h> main () { int n, a, sum(int n); int (*ptr)sum(int n); n = 100;ptr = & sum;a = (*ptr)(n)print("Sum = %d/n", a);int sum (int n) { Int *i*, *j*; i = 0;

for $(i = 1; i \le n; i + +)$

j+=i; return(j)

(a) Sum = 5050

(b) Sum = 5000

(c) Produces compile time error

(d) Produces run time error

If $z = (\lambda + 3) + i(5 - \lambda^2)^{1/2}$, then the locus of z is a/an 117.

(a) ellipse

(b) circle

(c) plane

(d) None of these

If $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + ...}}}$ then x =118.

(b) 2

(c) 3.14

(d) None of these

The number of real solutions of $\sin(e^x) = 5x + 5^{-x}$ is 119.

(b) 5

(d) None of these

The solution of the differential equation $\frac{dy}{dx} = \frac{xy + y}{xy + x}$ is **120**.

(a) $y + x = \log \frac{kx}{y}$ (b) $y - x = \log \frac{ky}{x}$ (c) $y - x = \log \frac{kx}{y}$

(d) None of these