JNU MCA - 2003

1.	The fourth power of $\sqrt{\ }$	$1 + \sqrt{1 + \sqrt{1 + is}}$ is			
	(a) $3 + 2\sqrt{2}$	(b) $1 + 2\sqrt{3}$	(c) $(1/2)(7 + 3\sqrt{5})$	(d) $\sqrt{2} + \sqrt{3}$	
2.	The last digit of 2 ¹⁹⁹ is				
	(a) 2	(b) 4	(c) 6	(d) 8	
3.	If 1! + 2! + 3! + + 95!	$= x \mod 15$, then one p	ossible value of x is		
	(a) 14	(b) 3	(c) 1	(d) None of these	
4.	If $ z - 4z^{-1} = 2$, then t	he greatest of value of 2	z is		
	(a) $\sqrt{2}$	(b) $\sqrt{3}$	(c) $\sqrt{5}$	(d) $\sqrt{5} + 1$	
5 .	A simple graph with n	vertices must be conne	cted if it has more than		
	(a) $(n-1)/2$ edges		(b) $n^3/2$ edges		
	(c) $\frac{ (n-1)(n-2) }{2}$ edge	es	(d) n edges		
6.	Twenty-five members every member has diff	of a new club meet each erent neighbours at each	h day for lunch at a rou n lunch. How many days	nd able. They decide to sit such that s can this arrangement last?	
	(a) 25 days	(b) 12 days	(c) 18 days	(d) 13 days	
7.	The maximum level, possible height of an n		binary tree is called the	ne height of the tree. The minimum	
	(a) $\log_2 n$	(b) $n - 1$	(c) $[\log_2 (n+1) - 1]$	(d) $[\log_2 n]$	
8.	The value of $\int_2^3 \frac{(x+x)^2}{\sqrt{x^2+x^2}}$	$\frac{1) dx}{2x+3} $ is			
			(c) 7	(d) None of these	
9.	If m and n are positive	numbers then the limit	$\lim_{x \to 0} \frac{m^x - n^x}{x}$ is equal to	0	
	(a) $\log \frac{m}{n}$	(b) $m - n$	(c) $\frac{m}{n}$	(d) Does not exist	

The rate at which body changes temperature is proportional to the difference between its temperature and that of the surrounding medium. This is called Newton's law of cooling. If y = f(t) is the unknown temperature of the body at time t and M(t) denotes the known temperature of the surrounding medium,

(b) y' = -k [y - M(t)](d) y' = -k M(t)

Newtion's law leads to the differential equation

10.

(a) y' = ky

(c) y' = -ky

where k is a positive constant.

11.	The series $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ converges and has the sum				
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{3}{2}$	(d) $\frac{1}{4}$	
12 .	If $z = (\lambda + 3) + i\sqrt{5 - \lambda^2}$	(λ is a real parameter a	and $i = \sqrt{-1}$), then the local	cus of z is	
	(a) circle	(b) ellipse	(c) parabola	(d) hyperbola	
13.	If $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}$	up to ∞ , then x equals			
	(a) - 1	(b) ln 2	(c) 2	(d) 2 ln 2	
14.	If S_r $(1 \le r \le 9)$ denote $9(S_n - S_{n-1})$ for $2 \le n$	tes the sum to r term ≤ 9 equals	ns of the series $1 + 22$	$2 + 333 + 4444 + \dots + \underbrace{99.\dots9}_{9 \text{ times}}, \text{ then}$	
	(a) $10^n - n^2 + n$	` '	(c) $10^n - 1$	(d) $n(10^n - 1)$	
15 .	$\lim_{x \to \infty} \left[\sqrt{x+1} - \sqrt{x-1} \right] =$	=			
	(a) 1	(b) $\sqrt{2}$	(c) ∞	(d) 0	
16.	A_r equals	·		cts with unlimited repetitions. Then	
	$(a) \binom{n}{r}$	$ (b) \binom{n+r-1}{r} $	(c) n^r	(d) r^n	
17 .	A car travels from <i>P</i> to speed, in kmph, is near		urns from Q to P at 40	kmph by the same route. Its average	
	(a) 32	(b) 33	(c) 34	(d) 35	
18 .	The remainder when 3	³⁷ divided by 79 is			
	(a) 1	(b) 2	(c) 13	(d) 35	
19 .	The number of terms i	n the expansion of $[(x +$	$(3y)^2 (x-3y)^2$] ² is		
	(a) 4	(b) 5	(c) 6	(d) 7	
20 .	If x , y , z and w satisfy	the equations $x + 7y +$			
	8x + 4y + 6z + 2w = -16 2x + 6y + 4z + 8w = 16				
		5x + 3y + 7z +			
	then $(x + w)(y + z)$ equ	ual			
	(a) 4	(b) 0	(c) 16	(d) - 16	
21.	-			nvestments. Each investment must be ny different investment strategies are	
	(a) $\binom{23}{3}$	$(b) \binom{23}{4}$	(c) $\binom{24}{3}$	$(d) \binom{24}{4}$	
22.	An ordinary deck of 5 that each pile has exact		omly divided into 4 pil	es of 13 cards each. The probability	
	(a) 0.105	(b) 0.215	(c) 0.516	(d) 0.001	
23.	_	_	_	al results in success with probability east one success occurs in the first n	
	(a) $p(1-p)^{n-1}$	(b) $(1-p)^n$	(c) $1 - (1 - p)^n$	(d) p^n	

24.				age of a certain book has Poisson mber of errors in the book is
	(a) 300	(b) 150	(c) 600	(d) 393
25 .	In seven-layer OSI net	work architecture, the fo	ourth layer corresponds	to
	(a) data link control lay	ver		(b) session layer
	(c) transport layer	4 0	(d) presentation layer	
26 .		$aba^{-1} = b^2$ for $a, b \in G$,		
	(a) 5	(b) 7	(c) 29	(d) 31
27 .	What is the remainder	when the sum $1^5 + 2^5$	$+3^5 + + 99^5 + 100^5$ is	s divided by 4?
	(a) 0	(b) 1	(c) 2	(d) 3
28.	If $g.c.d(l, m) = 1$, then	$g.c.d.(l^n, m^n)$ for every	integer $n \ge 1$ is	
	(a) \sqrt{n}	(b) <i>n</i>	(c) n^2	(d) 1
29.	The coefficient of x^2 in	n the trinomial expansio		
	$(a) \binom{10}{1}$	$(b)\binom{10}{2}$	$(c)\binom{10}{1} + \binom{10}{2}$	$(d) \binom{10}{3}$
30.	Given any five points is true. Which one is it (a) The five points lie (b) At least one square	in the square $1^2 = \{(x, y)\}$?	$(y): 0 \le x \le 1, 0 \le y \le 1$ } ur of the five points	, only one of the following statements
	• •	•	distance between them	does not exceed $\frac{1}{}$
	(d) Thoro are at rouse to	wo points such that the	distance servicent mon	$\sqrt{2}$
31.	The worst case running	g time of quick sort is		
	(a) $O(n \log_2 n)$		(b) $O(n \log_e n)$	
	(c) $O(n^2)$		(d) None of these	
32 .		(a+b) * ab (a+b) * b		
	(a) $(a + b) * a(a + b) * b$ (c) $(a + b) *$	$(a+b)$ ^	(b) $(a + b) * ab (a + b) *$ (d) None of these	
33.		on in which a large but		rehed very frequently. The available
30.	You have an application in which a large but fixed table is to be searched very frequently. The available RAM is adequate to load the table. What would be the best option for storing such a table? (a) a sorted array (b) Binary search tree (c) Hash table (d) A heap			
34.	The number of ways in	n which three distinct n	umbers in AP can be sel	lected from 1, 2,, 24 is
	(a) 112	(b) 132	(c) 276	(d) 572
35 .	If $(\log_5 x) \log_x 3x) \log_3$	$(x, y) = \log_x x^3$, then $y = \log_x x$	quals	
	(a) 25	(b) 125	(c) 5/3	(d) 243
36.	The velocity of a car seconds is	at time <i>t</i> seconds is giv	ven by by $3\sqrt{t}$ m/s, the	distance travelled by the car in 100
	(a) 1500 <i>m</i>	(b) 2000 m	(c) 3000 m	(d) 3500 m
37 .	If $f: R \to R$, $f(x) = 2x$	+ 7, then $f^{-1}(x)$ is		
	(a) $7 + 2x$	(b) $2x - 7$	(c) $(x-7)/2$	(d) Does not exist
38.	•	,		If $ a-b < 4$. The relation is
00.	(a) reflexive and symm		(b) reflexive and transi	
	(c) symmetric and tran		(d) None of these	
	· , 5			

39 .	Consider the recurren	$ace relation x_n = x_{n-2} +$	(n-2) + (n-1) with init	ial condition $x_1 = 0$. Then x_n equals
	(a) $\frac{n(n-1)}{2}$	(b) $\frac{n-1}{2}$	(c) $(n-1)$	(d) $n(n-1)$
40 .	newspaper C . Five pe	ercent (5%) of the familie	es buy \tilde{A} and \tilde{B} , 3% buy	20% buy newspaper <i>B</i> and 10% buy <i>B</i> and <i>C</i> , 4% buy <i>A</i> and <i>C</i> . If 2% buy e of the newspapers <i>A</i> , <i>B</i> and <i>C</i> is (d) 4000
41.	` '	` '	` '	h each other. In how many ways can
71.		w so that these two pers		
	(a) 20!	(b) 20! – 2 (19)!	(c) 19!	(d) None of these
42 .	If X_1 and X_2 are inde	ependent normal randor	n variables with parame	eters (μ, σ_1^2) and (μ_2, σ_2^2) , respectively
	then $X_1 - X_2$ is norm	al with mean μ and vari	ance σ^2 such that	
	(a) $\mu = \mu_1 - \mu_2$, $\sigma^2 =$	$\sigma_1^2 - \sigma_2^2$	(b) $\mu = \mu_1 + \mu_2$, $\sigma^2 = 0$	$\sigma_1^2 + \sigma_2^2$
	(c) $\mu = \mu_1 + \mu_2$, $\sigma^2 =$	$\sigma_1^2 \ \sigma_2^2$	(d) $\mu = \mu_1 - \mu_2$, $\sigma^2 = 0$	$(\sigma_1 - \sigma_2)^2$
43 .	Let λ be a constant. The	hen var $(\lambda, X) = k \text{ var } X$,	where k equals	
	(a) 1	(b) λ	(c) λ^2	(d) None of these
44 .	•	itive numbers is unity. T		* .
	(a) $\frac{1}{8}$	(b) $\frac{1}{16}$	(c) $\frac{1}{27}$	(d) $\frac{1}{64}$
45 .	-	n time using a binary sea	2,	04
10.	(a) $0 (\log_2 n)$	(b) $0 (\log_e n)$	(c) 0 (n)	(d) $0 (n^2)$
46 .		- 0	form only addition and	multiplication. It requires the same
		ultiplication and addition		number of computations required to
	(a) 6	(b) 7	(c) 10	(d) 12
47 .	An interrupt is (a) a program that sto	ns the CDII		
		ps the Cr O synchronous or exceptio	nal event	
	• •	nvoked when a printer i		
	(d) an operating syste	m module		
40	$egin{array}{c ccc} 1 & k & k^3 \ 1 & l & l^3 \ \end{array}$ is			
48.	$\begin{bmatrix} 1 & I & I \\ 1 & m & m^3 \end{bmatrix}$ is			
		k)(k + l + m) $k)(d)(k^2 + l^2 + m^2)(k + l^2 + m^2)$		
49 .	Which of the followin	ng is true ?		
	(a) A macro and a sub			
	(b) A macro is a small		.1. 1	
	(d) None of the above	am written in an assemb	ory ranguage	
50 .	Define			
	$A(0, n) = n + 1 \text{ for } n \ge n$			
	A(m, 0) = A(m-1, 1)		s 0	
	A(m, n) = A(m - 1, A) Then $A(1, 2) =$	(m, n-1)) for $m > 0$, $n > 1$	∕ U	
	(a) 3	(b) 4	(c) 5	(d) 8

51 .	The weighted arithn	netic mean of the fir	est <i>n</i> natural numbers	whose weights are equal to the
01.	corresponding number	rs is given by		
	(a) $\frac{2n+1}{3}$	(b) $\frac{2n+3}{6}$	(c) $\frac{n+1}{2}$	(d) $\frac{(n+1)(2n+1)}{6}$
52 .	Tetrahedron is bounde	-	_	Ç
	(a) 3 planes		(b) 4 planes	
	(c) 5 planes $(2n)$		(d) 6 planes	
53 .	$Given \binom{2n}{2} = 2 \binom{n}{2} + S$	S, the value of S is		
	(a) n^2	(b) 2 <i>n</i>	(c) $n + 2$	$(d) \frac{n(n-1)}{3}$
54 .	The radius of curvatur	re at the origin for the c	urve $x^3 + y^3 - 2x^2 + 6y$	$r^2 = 0$ is
	(a) $\frac{3}{2}$	(b) 2	(c) $\frac{5}{2}$	(d) 3
55 .	If $A = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$, then A^{-1}	¹⁰ equals	2	
	(a) $\begin{bmatrix} 1 & 10\alpha \\ 0 & 1 \end{bmatrix}$	$(b)\begin{bmatrix} 1 & 10\alpha \\ 0 & 10 \end{bmatrix}$	$ (c) \begin{bmatrix} 1 & \alpha^{10} \\ 0 & 1 \end{bmatrix} $	$(d)\begin{bmatrix} 1 & 10^{\alpha} \\ 0 & 10 \end{bmatrix}$
56 .	For what value of <i>x</i> is	S = x - 0.1 + x - 0.2	+ x - 0.3 + x - 0.4 +	x-0.5 minimum?
	(a) AM of (0.1, 0.2, 0.3	, 0.4, 0.5)	(b) HM of (0.1, 0.2, 0.3	, 0.4, 0.5)
	(c) GM of (0.1, 0.2, 0.3,		(d) Median of (0.1, 0.2	, 0.3, 0.4, 0.5)
57 .	The value of $\sum_{k=0}^{\infty} \frac{(k-1)^{2k}}{2^k}$	is		
	(a) - 4	(b) 4	(c) 0	(d) ∞
58 .	If each element of a matrices, where M_k ed	quals		an construct M_k number of different
	(a) 2k	(b) 2^{k^2}	(c) k^2	(d) 2^k
59 .		programs, call them <i>P</i> a data values acceptable t		e set of all data values acceptable to P
		cceptable to exactly one		2
		cceptable to both P and	-	
		scceptable to <i>P</i> but not to scceptable to <i>Q</i> but not to		
60 .		70 and $\log_{10} 3 = 0.48$, th		
	(a) 0.61	(b) 0.72	(c) 0.53	(d) 0.86
61.	If the roots of $(x - A)(x - A)$	(x-B) + (x-B)(x-C) +	(x - C)(x - A) = 0 (when	e A , B , C are real numbers) are equal,
	then			
	(a) $A = B = C$	(b) $A + B + C = 0$	(c) $B^2 - 4AC = 0$	(c) None of these
62 .	One of the words liste	ed below is my secret wo		
	With this in front of		DUE, MOD, OAT, TIE	a latters of my secret word then
		ne the number of vowel		e letters of my secret word, then you nich is my secret word?
	(a) MOD	(b) TIE	(c) DUE	(d) OAT

74 .	Let X,Y,Z be three independent normal variables N (0, 1). Then $E[(X-Y-Z)^2]$ is			
	(a) 3	(b) 9	(c) 6	(d) 0
75 .	The variable that has i	its scope limited to a fur	action and life-time for t	he entire execution of the program is
	(a) global variable		(b) local variable	
	(c) static variable		(d) extern variable	
76 .	Given the initial value $x = x \cdot 5?(x = x \cdot 6):(x \cdot 5)$	-	of x after executing the	expression $(x = x \text{ and } 9)$?
	(a) 4	(b) 5	(c) 6	(d) 9
77.	to element 34. The val	ue of x after execution of	of the expression $x = (*P)$	
	(a) 60	(b) 59	(c) 33	(d) 27
78.	Given the following fo (i) Destructor can be v (ii) Constructor can be (iii) Destructor is not i (iv) Constructor may not (a) i, ii, iii	irtual virtual	Identify the correct com	abination (d) ii, iii, iv
70	I at (1 a a f a a t' a a a t'	f(x) = f(x)	.11	If ((500) = 0, the section (600) 2
79 .	Let j be a function satis	Siying $f(xy) = \frac{y}{y}$ for a	ali positive real numbers	. If $f(500) = 3$, then what is $f(600)$?
	(a) 2.0	(b) 3.6	(c) 2.5	(d) 4.0
80.	The probability that a	number in {1, 2,, 100	1} is divisible by 7 or 1	1 or both, is
	(a) $\frac{143}{1001}$	(b) $\frac{221}{1001}$	(c) $\frac{247}{1001}$	(d) $\frac{91}{1001}$
				1001
81.	Let $f(x) = \sqrt{x} + \sqrt{0} + \sqrt{x}$	$\overline{\sqrt{x+\dots}}$. If $f(\alpha) = 4$, then	$f'(\alpha)$ is	
	(a) 0	(b) 1	(c) $\frac{1}{7}$	(d) $\frac{1}{4}$
82.	The system of linear e	_	·	_
		$kx_1 + \lambda x_2 + \lambda x_3 + \lambda x_4$		
		$\lambda x_1 + kx_2 + \lambda x_3 + \lambda x_4$ $\lambda x_1 + \lambda x_2 + kx_3 + \lambda x_4$	-	
		$\lambda x_1 + \lambda x_2 + \lambda x_3 + \lambda x_4$ $\lambda x_1 + \lambda x_2 + \lambda x_3 + k x_4$		
	has solution if and on		±	
	(a) $k - \lambda \neq 0$	(b) $k - 3\lambda \neq 0$	(c) $(k - \lambda)(k - 3\lambda) \neq 0$	(d) $k + \lambda \neq 0$
83.	$\int_0^\pi \min\left(\sin x,\cos x\right) dx$	equals		
	(a) $1 - \sqrt{2}$	(b) 1	(c) $1 - 2\sqrt{2}$	(d) 0
84.	The projection of the v	vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ on to $\hat{\mathbf{i}}$	$-2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is given by	
	(a) $\sqrt{13}$	$(b) \frac{6}{\sqrt{14}}$	(c) $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$	$(d) \frac{2}{\sqrt{14}}$
85 .	Relative to the ellipse	$x^2 + y^2 + xy = 7, \text{ the po}$	oint (2, 3) lies	
	(a) inside		(b) outside	
	(c) on		-	l without tracing the curve
86.	$\int_{a}^{b} f(a-b-x) dx = \int_{a}^{b}$	ydx, where y stands for		
	(a) f (-x)	(b) - f(x)	(c) $f(x)$	(d) f(x) + f(-x)

87 .	The third term of	a geometric progression i	s 3. The product of firs	et five terms is		
	(a) 143	(b) 27	(c) 243	(d) uncertain		
88.	The number of so	lutions to the equation x^2	-5 x +6=0 is			
	(a) 2		(b) 4			
	(c) 6		(d) None of these			
89.	Let R be a rectan vertices of R ?	gle. How many circles in	the plane of R have a	a diameter both of whose end points are		
	(a) 1	(b) 2	(c) 4	(d) 5		
90.	In a quadrilateral Then <i>AC</i> equals	<i>ABCD</i> , it is given that $\angle A$	$A = 120^{\circ}$, angles B and B	D are right angles, $AB = 13$, and $AD = 46$.		
	(a) 62	(b) 64	(c) 65	(d) 72		
91 .	_	ich data in a database sys				
	•	ence (b) data security	(c) data privacy	(d) data integrity		
92 .		$ \underline{c} = 4$ and $\underline{a} + \underline{b} + \underline{c} = 0$, then				
	(a) - 25	(b) $\frac{21}{2}$	(c) $-\frac{21}{2}$	$(d) - \frac{29}{2}$		
93 .	The value of tan 1° t	an 2° tan 3°tan 89° is				
	(a) 0	(b) 1	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$		
94 .	If $\sin A + \sin B =$	$p \text{ and } \cos A + \cos B = q, \text{ th}$	hen $\cos(A + B)$ equal			
	(a) $p^2 + q^2$	(b) $\frac{q^2 - p^2}{p^2 + q^2}$	(c) $\frac{q^2}{p^2 + q^2}$	(d) $\frac{p^2 - q^2}{p^2 + q^2}$		
95 .	If $ z + 4 \le 3$, then	z+1				
	$(a) \leq 4$	$(b) \le 5$	(c) ≤ 6	(d) None of these		
96 .	The slope of the r	normal at the point (at^2 , 2	at) of the parabola y^2	= 4ax is		
	(a) $\log t$	(b) $-t$	(c) <i>t</i>	(d) - at		
97.	Frame relay netw correct option.	orks were developed to a	dd more features that	X. 25 was not able to provide. Select the		
	(a) Connection-oriented, variable-bit rate real-time applications.					
	(b) Connection-oriented, constant-bit rate real-time applications					
	(c) Higher data rate at lower cost than $X.25$, reduced control overheads and bandwidth on demand					
	(d) All of the above					
98.	•	eated at a distance of 1 ki of 1 Mbps. The utilization		network transmit the frames of size 100 twork is		
	(a) 98%	(b) 95%	(c) 93%	(d) 90%		
0.0		els at a velocity of 2×10^8				
99 .		system it is more importa		and many an action a		
	(c) minimize thro	ance in response time	(b) minimize avera	age response time age response time and throughput		
100.	` '	$ k \operatorname{does} 4x^2 + 8xy + ky^2 = $				
100.	(a) 4	(b) 8	(c) – 4	(d) 0		
101		` '	` '	ents. The smaller fragment with mass M		
101.		v 20 î + 50 ĵ . The velocity o				
	(a) 20 î	(b) $20 \hat{\mathbf{i}} - 42 \hat{\mathbf{j}}$	(c) $\frac{(20\hat{\mathbf{i}} - 42\hat{\mathbf{j}})}{3}$	(d) $60\hat{\mathbf{i}} + 150\hat{\mathbf{j}}$		
			-			

102 .				s Q of X such that $P\Delta Q = \{3\}$ is	
	(a) $2^4 - 1$	(b) 2 ⁴	(c) 2^5	(d) 1	
103.	Let <i>n</i> be any integer. T	Then $n(n+1)(2n+1)$			
	(a) is a perfect square		(b) is an integer multip	ole of 6	
	(c) is an odd number		(d) None of these		
104 .		<u></u> '		with twice the area of <i>PQRS</i> is	
	(a) $4(a + b)$	(b) $\sqrt{8} (a + b)$	(c) $2(a+b)$	(d) 8 <i>ab</i>	
105 .	The maximum distance	ce between two points of			
	(a) $\sqrt{3}$	(b) $\sqrt{2} + \sqrt{3}$	(c) $\sqrt{2} + 1$	(d) 3	
106.		nt algorithm with 3 fran , 4, 2, 1, 5, 6, 2, 1, 2, 3,		ge faults that occur for the following	
	(a) 12	(b 15	(c) 18	(d) 20	
107 .	To prevent deadlock w	which of the following ca	nnot be disallowed?		
	(a) Mutual exclusion	(b) Hold and wait	(c) No preemption	(d) Circular wait	
108.		f a pipeline processing nt takes 20 ns for compu		non-pipeline processing that uses 4	
	(a) 3.00	(b) 3.88	(c) 3.05	(d) 3.98	
	when there are 100 tas				
109.	If <i>w</i> is arbitrary and \underline{r}				
	(a) $\underline{r} = k\underline{w}$ for some $k \ge 1$	> 0	(b) $\underline{r} = k\underline{w}$ for some $k < 0$		
	(c) $\underline{r} = \underline{0}$		(d) None of these		
110.111.	Which of the following is not an assumption of the binomial distribution? (a) All trials must be identical (b) All trials must be independent (c) Each trial must be classified as success or failure (d) The probability of success is 0.5 in all trials If x, y, z are in R ³ and linearly independent, which of the following is false?				
	(a) $\{x, y, z\}$ forms a ba	• •	(b) x , $x + y$, $x + y + z$		
	(c) $\sum_{j=1}^{3} \lambda_j x_j$, $\lambda_j \in R$ is the	heir linear span	(d) x and y are linearly	independent	
112 .	Which of the following	g is true for any real x ?			
	(a) $\cos(\sin x) \ge \sin(\cos x)$	s x)	(b) $\cos(\sin x) \le \sin(\cos x)$	s <i>x</i>)	
	(c) $\cos(\sin x) = -\sin(c)$	os x)	(d) None of the above		
113.	Which of the following is true about a linear programming problem? (a) If two distinct bases correspond to the same basic feasible solution <i>x</i> , then <i>x</i> is degenerate (b) If there is an optimal solution at the vertex, then there is also a solution in the interior (c) Optimal solution is unique (d) There may exist feasible solutions, but not a basic feasible solution				
114.	k = 0 For $i_1 = 1$ to 10 For $i_2 = 1$ to i_1 For $i_3 = 1$ to i_2 k = k + 1 print k What would be the value (a) 120	lue of <i>k</i> after the above p (b) 398	program segment is exec (c) 220	cuted ? (d) 1000	
	(-)	(2) 000	(3) ==0	(-, -000	

115.	The value of $\lim_{x \to a}$	$\int_{0}^{x^2} \frac{e^{t^2} dt}{x^2}$ is			
	(a) 0	(b) ∞	(c) 1	(d) $\frac{1}{2}$	
116 .	Let \overline{p} , \overline{q} , \overline{r} be equation	three mutually perpendic	ular vectors of the	same magnitude. If a vector \bar{x}	satisfies the
	$\overline{p} \times ((\overline{x} - \overline{q}) + \overline{q}$	$\times ((\overline{x} - \overline{r}) \times \overline{q}) + \overline{r} \times ((\overline{x} - \overline{p}) \times \overline{q})$	$(x) \times \bar{r} = 0 \text{ then } \bar{x}, \text{ in }$	terms of $\overline{p},\ \overline{q}$ and $\overline{r},$ is	
	(a) $\overline{p} \times \overline{q} + \overline{q} \times \overline{q}$	$\bar{r} + \bar{r} \times \bar{p}$	(b) $(\overline{p} + \overline{q} + \overline{r})$		
	(c) $(\overline{p} \times \overline{q}) \times \overline{r}$ +	$(\overline{q} \times \overline{r}) \times \overline{p} + (\overline{r} \times \overline{p}) \times \overline{q}$	(d) $\frac{(\overline{p} + \overline{q} + \overline{r})}{2}$		
117.	If f(x) = (10 - x)	$(x^{10})^{1/10}$, then $f[f(x)]$ is			
	(a) v^{10}	(b) **	(a) r^{20}	(d) None of these	

(d) None of these (b) x(c) x^2

 $\cos 20^{\rm o}\cos 40^{\rm o}\cos 60^{\rm o}\cos 80^{\rm o}\ {\rm equals}$ **118**. (c) $\frac{1}{16}$ (b) $\frac{1}{8}$

If $a^x = bc$, $b^y = ac$, $c^z = ab$, then $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ equals **119**.

(a) 1 (b) 3 (c) 0 (d) (a+b+c)If $\sqrt{3}+1$ is a root pf the equation $3x^3+ax^2+bx+12=0$, where a and b are rational numbers, then b(d)(a+b+c)**120**.

(b) 6 (a) - 12(c) 5 (d) 2