JNU MCA - 2005 | 1. | If $\int_{\pi/2} \sin x dx = \sin 2\theta$, then the value of θ satisfying $0 < \theta < \pi$ is | | | | | | |--|--|--------------------------|-----------------------|--|--|--| | | (a) $3\pi/2$ | (b) π/6 | (c) 5π/6 | (d) π/2 | | | | 2 . | Which one of the foll | lowing operators canno | ot be overloaded ? | | | | | | (a) Subscripting operator | | (b) Function call op | (b) Function call operator | | | | | (c) Membership operator | | (d) Assignment ope | (d) Assignment operator | | | | 3. | A survey shows that 63% of Indians like banana whereas 76% like apples. if x % of Indians like banana apples, then | | | apples. if $x\%$ of Indians like both banana | | | | | (a) $x = 39$ | (b) $x = 63$ | (c) $39 \le x \le 63$ | (d) None of these | | | | 4. | If $f(x) = ax + b$ and $g(x) = cx + d$, then $f(g(x)) = g(f(x))$ is equivalent to | | | | | | | | (a) f(a) = g(c) | (b) f(b) = g(b) | (c) f(a) = g(b) | (d) f(c) = g(a) | | | | 5 . | Total number of commutative binary operation on a finite set containing n elements is | | | nining n elements is | | | | | (a) $n \frac{n(n+1)}{2}$ | (b) $n \frac{n(n-1)}{2}$ | (c) n^{n^2} | (d) 2^{n^2} | | | | 6. | Which of the following | ng is correct ? | | | | | | | (a) $1 + i > 2 - i$ | (b) $2 + i > 1 + i$ | (c) $2 - i > 1 + i$ | (d) None of these | | | | 7. The encoding scheme that uses only both polarities to represent binary 1 and 0 is | | | | nary 1 and 0 is | | | | | (a) bi-phase | (b) bipolar | (c) polar | (d) unipolar | | | | 8. | Which of the following insertions in the AVL tree below will result in a non-AVL tree? | | | | | | | (51)
(68) | | | | | | | | | | | | | | | (c) 70 If the complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other, then x is equal to (c) 0 (d) None of these (d) None of these (b) 37 (b) $(n + 1/2) \pi$ 9. (a) $n\pi$ | 25 . Consider a relation $R(P, Q, R, S)$ with the set of functional dependencies $F = \{PQ \text{ Which of the following is a key of } R$ | | | ncies $F = \{PQ \to R, R \to S, S \to P\}.$ | | | | |--|---|---|--|--|--|--| | | (a) PQ | (b) <i>QR</i> | (c) <i>QS</i> | (d) All of these above | | | | 26. | | | | | | | | | (a) $2^n - 1$ | (b) $n^2 - 1$ | (c) $2^n - 2$ | (d) $n^2 - 2$ | | | | 27. | $\sum_{n=0}^{\infty} \frac{(\log_e x)^n}{n!}$ is equal t | 0 | | | | | | | (a) $\log e^x$ | (b) <i>x</i> | (c) $\log_x e$ | (d) None of these | | | | 28. | What will be the output of the following C Program ? main () { int i, $n = 5$; for (i = 1, i < = n; i ++) print f ("%d", funct1 (i)); } int funct1 (int n) { if $n > 0$ return $(n + funct1 (n - 1))$; | | | | | | | | else return (0); } | | | | | | | | (a) 1 3 6 10 15 | (b) 3 6 10 15 21 | (c) 1 3 7 9 15 | (d) None of these | | | | 29 . | | equal like-parallel forces | ` ' | | | | | | (a) incentre | (b) circumcentre | (c) orthocentre | (d) centroid | | | | 30. | If $I_1 = \int_e^{e^2} \frac{dx}{\log x}$ and I_2 | $= \int_{1}^{2} \frac{e^{x} dx}{x}, \text{ then}$ | | | | | | | (a) $I_1 = I_2$ | (b) $2I_1 = I_2$ | (c) $I_1 2I_2$ | (d) None of these | | | | 31 . | The coefficient of x^n i | n the expansion of \log_a (| (1+x) is | | | | | | (a) $\frac{(-1)^{n-1}}{n}$ | (b) $\frac{(-1)^{n-1}}{n} \log_a e$ | $(c) \frac{(-1)^{n-1}}{n} \log_e a$ | $(\mathrm{d})\frac{(-1)^n}{n}\log_a e$ | | | | 32 . | What is a system call ? | | | | | | | | (a) Interface between process and hardware(c) Interface between process and OS | | (b) Interface between OS and hardware(d) None ofthese | | | | | 33. | The inverse of a diagonal matrix is (a) a symmetric matrix (b) a skew-symmetric matrix | | | | | | | | (c) a diagonal matrix | | (d) None of these | | | | | 34 . | The vector interrupt address of "TRAP" in 8085 microprocessor is | | | | | | | | (a) 0034H | (b) 003CH | (c) 002CH | (d) 0024H | | | | 35 . | The rank of a null mat | rix | | | | | | | (a) is 0 | (b) is 1 | (c) does not exist | (d) None of these | | | | 36. | If every pair from am sum of the three comm | | $px + qr = 0, \ x^2 + qx + x$ | rp = 0 has a common root, then the | | | | | (a) $2(p+q+r)$ | (b) $p + q + r$ | (c) - (p + q + r) | (d) pqr | | | | | | | | | | | | 73. For any complex number z , the minimum value of $ z + z-1 $ is | | | | | |--|---|---|--|--| | | (a) 1 | (b) 0 | (c) 1/2 | (d) 3/2 | | 74. | 0 | tudes of two forces acting with the force of similar | 2 | he magnitude of their resultant is 12. mitudes are | | | (a) 3, 15 | (b) 4, 14 | (c) 5, 13 | (d) 6, 12 | | 75 . | Given p and $(p \land - p)$ | $\rightarrow \neg$, proves | | | | | (a) $q \to p$ | (b) $p \to q$ | (c) p | (d) q | | 76. | 0 | - | | all we know is that the number was ability that the missing digits are all | | | (a) 0.001 | (b) 0.006 | (c) 0.010 | (d) 0.270 | | 77. | The value of integral \int | $\frac{1+x^2}{1+x^4} dx$ is equal to | | | | | (a) $\tan^{-1} x^2 + C$ | | (b) $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x^2 - 1}{x\sqrt{2}} \right)$ | | | | (c) $\frac{1}{2\sqrt{2}} \log \left(\frac{x^2 + 1 + x^2}{x^2 + 1 - x^2} \right)$ | V 2) | (d) None of these | | | 78 . | The value of the integr | $\operatorname{ral} \int_{-1}^{1} x x dx$ is | | | | | (a) 2 | (b) 1 | (c) 0 | (d) 3 | | 79 . | The bandwidth of an I | FM signal carrying a me | ssage signal of 12 MHz | oandwidth is | | | (a) 24 MHz | (b) 48 MHz | (c) 96 MHz | (d) 120 MHz | | 80 . | The area of the figure bounded by the curves $y = e^x$, $y = e^{-x}$ and the straight line $x = 1$ is | | | straight line $x = 1$ is | | | (a) $e + \frac{1}{e}$ | (b) $e - \frac{1}{e}$ | (c) $e + \frac{1}{e} - 2$ | (d) None of these | | 81. | If the letters of the wo letters between R and | | rranged at random the p | probability that there will be exactly 4 | | | icticis between it and | E is | | | | | (a) 1/10 | E is (b) 1/9 | (c) 1/5 | (d) 1/2 | | 82. | (a) 1/10 | | , , | ` ' | | 82. | (a) 1/10 | (b) $1/9$ and $\sin A + \sin B = n$, when | , , | ` ' | | 82.
83. | (a) $1/10$ If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$ | (b) 1/9 | ere $m, n \neq 0$, then $\sin (A + C) \frac{m^2 + n^2}{2mn}$ | + B) is equal to | | | (a) $1/10$
If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$
What will be the output if ("abc" = = "abc") print f ("Yes/n"); | (b) $1/9$ and $\sin A + \sin B = n$, who (b) $\frac{2mn}{m^2 + n^2}$ | ere $m, n \neq 0$, then $\sin (A + C) \frac{m^2 + n^2}{2mn}$ | + B) is equal to | | | (a) $1/10$
If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$
What will be the output if ("abc" = = "abc") print f ("Yes/n"); else | (b) $1/9$ and $\sin A + \sin B = n$, who (b) $\frac{2mn}{m^2 + n^2}$ | ere $m, n \neq 0$, then $\sin (A + C) \frac{m^2 + n^2}{2mn}$ | + B) is equal to | | | (a) $1/10$
If $\cos A + \cos B = m$ are (a) $\frac{mn}{m^2 + n^2}$
What will be the output if ("abc" = = "abc") print f ("Yes/n"); else print f ("No/n"); | (b) $1/9$ and $\sin A + \sin B = n$, who (b) $\frac{2mn}{m^2 + n^2}$ | ere $m, n \neq 0$, then $\sin (A + n^2)$ (c) $\frac{m^2 + n^2}{2mn}$ ode ? | + B) is equal to | | | (a) $1/10$
If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$
What will be the output if ("abc" = = "abc") print f ("Yes/n"); else | (b) $1/9$ and $\sin A + \sin B = n$, when $\sin A + \sin B = n$ then $\sin A + \sin B = n$ is $\sin A + \sin B = n$. Then $\sin A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. | ere $m, n \neq 0$, then $\sin (A + C) \frac{m^2 + n^2}{2mn}$ | + B) is equal to | | | (a) $1/10$ If $\cos A + \cos B = m$ are (a) $\frac{mn}{m^2 + n^2}$ What will be the output of the following | (b) $1/9$ and $\sin A + \sin B = n$, when $\sin A + \sin B = n$ then $\sin A + \sin B = n$ is $\sin A + \sin B = n$. Then $\sin A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. Then $\cos A + \sin B = n$ is $\cos A + \sin B = n$. | ere $m, n \neq 0$, then $\sin (A + n^2)$
(c) $\frac{m^2 + n^2}{2mn}$
ode ?
(b) No
(d) None of these
$x = \cos x - 3\cos 2x + \cos 2x$ | (d) $\frac{mn}{m+n}$ $3x$ is | | 83. | (a) $1/10$ If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$ What will be the output if ("abc" = "abc") print f ("Yes/n"); else print f ("No/n"); (a) Yes (c) Cannot be determine The general solution of | (b) $1/9$ and $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, when $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin B = n$, and $\cos A + \sin A + \sin B = n$, and $\cos A + \sin A + \sin B = n$, and $\cos A + \sin $ | ere $m, n \neq 0$, then $\sin (A + n^2)$ (c) $\frac{m^2 + n^2}{2mn}$ ode ? (b) No (d) None of these | (d) $\frac{mn}{m+n}$ $3x$ is | | 83. | (a) $1/10$
If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$
What will be the output if ("abc" = = "abc") print f ("Yes/n"); else print f ("No/n"); (a) Yes (c) Cannot be determined as $(a) n\pi + \frac{\pi}{8}$ | (b) $1/9$ and $\sin A + \sin B = n$, where $\cos A + \sin B = n$ is the second of the following 'C' contained from $x - 3 \sin 2x + \sin 3x$ | ere $m, n \neq 0$, then $\sin (A + n^2)$
(c) $\frac{m^2 + n^2}{2mn}$
ode?
(b) No
(d) None of these
$x = \cos x - 3\cos 2x + \cos (c) (-1)^n \left(\frac{n\pi}{2} + \frac{\pi}{8}\right)$ | (d) $\frac{mn}{m+n}$ $3x$ is | | 83.
84. | (a) $1/10$
If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$
What will be the output if ("abc" = = "abc") print f ("Yes/n"); else print f ("No/n"); (a) Yes (c) Cannot be determined as $(a) n\pi + \frac{\pi}{8}$ | (b) $1/9$ and $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\cos A + \sin B = n$, and $\cos A + \sin B = n$, when $\cos A + \sin$ | ere $m, n \neq 0$, then $\sin (A + n^2)$
(c) $\frac{m^2 + n^2}{2mn}$
ode?
(b) No
(d) None of these
$x = \cos x - 3\cos 2x + \cos (c) (-1)^n \left(\frac{n\pi}{2} + \frac{\pi}{8}\right)$ | $+B$) is equal to $(d) \frac{mn}{m+n}$ $3x$ is $(d) 2n\pi + \cos^{-1}(3/2)$ | | 83.
84. | (a) $1/10$ If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$ What will be the output of ("abc" = "abc") print f ("Yes/n"); else print f ("No/n"); (a) Yes (c) Cannot be determined as $n\pi + \frac{\pi}{8}$ The normal to a given (a) $\frac{dy}{dx} = 0$ | (b) $1/9$ and $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\cos A + \sin B = n$, and $\cos A + \sin B = n$, when $\cos A + \sin$ | ere $m, n \neq 0$, then $\sin (A + \frac{m^2 + n^2}{2mn})$
(b) No
(d) None of these
$x = \cos x - 3\cos 2x + \cos (c)(-1)^n \left(\frac{n\pi}{2} + \frac{\pi}{8}\right)$
is if
(c) $\frac{dx}{dy} = 0$ | + B) is equal to (d) $\frac{mn}{m+n}$ $3x \text{ is}$ (d) $2n\pi + \cos^{-1}(3/2)$ (d) $\frac{dx}{dy} = 1$ | | 83.
84.
85. | (a) $1/10$ If $\cos A + \cos B = m$ and (a) $\frac{mn}{m^2 + n^2}$ What will be the output of ("abc" = "abc") print f ("Yes/n"); else print f ("No/n"); (a) Yes (c) Cannot be determined as $n\pi + \frac{\pi}{8}$ The normal to a given (a) $\frac{dy}{dx} = 0$ | (b) $1/9$ and $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\sin A + \sin B = n$, when $\cos A + \sin A + \sin B = n$, when $\cos A + \sin $ | ere $m, n \neq 0$, then $\sin (A + \frac{m^2 + n^2}{2mn})$
(b) No
(d) None of these
$x = \cos x - 3\cos 2x + \cos (c)(-1)^n \left(\frac{n\pi}{2} + \frac{\pi}{8}\right)$
is if
(c) $\frac{dx}{dy} = 0$ | + B) is equal to (d) $\frac{mn}{m+n}$ $3x \text{ is}$ (d) $2n\pi + \cos^{-1}(3/2)$ (d) $\frac{dx}{dy} = 1$ | | 87 . | The additive group of integers is a cyclic group generated by | | | | | | |--|--|---|----------------------------------|--|--|--| | | (a) 1 | (b) 2 | (c) 3 | (d) None of these | | | | 88. | The imaginary part of tan^{-1} (5 <i>i</i> /3) is | | | | | | | | (a) 0 | (b) ∞ | (c) log 2 | (b) log 4 | | | | 89. | | <i>N</i> and 15 <i>N</i> act on a li
e distance of its point of | | A and B respectively 6 m apart. The int A are respectivey. | | | | | (a) 10 N, 4.5 m | (b) 20 N, 4.5 m | (c) 20 N, 1.5 m | (d) 10 N, 1.5 m | | | | 90. | X.25 has | | | | | | | | (a) 3 layers | (b) 5 layers | (c) 2 layers | (d) 4 layers | | | | 91. | The locus of the point of intersection of tangents to the parabola $y^2 = 4(x+1)$ and $y^2 = 8(x+1)$ | | | | | | | | are perpendicular to each other is | | | | | | | | (a) $x + 7 = 0$ | (b) $x - y = 4$ | (c) $x + 3 = 0$ | (d) $y - x = 12$ | | | | 92. | A body of weight 60 kg rests on a rough horizontal plane, whose coefficient of friction is 2/3. The leas force acting horizontally that would move the body is | | | | | | | | (a) 10 kg wt | (b) 50 kg wt | (c) 40 kg wt | (d) 39 kg wt | | | | 93. | It the complex numbe | rs z1, z2, z3 are in AP, th | ien they lie on a/an | | | | | | (a) circle | (b) parabola | (c) line | (d) ellipse | | | | 94. | Which one is contrapo | | | | | | | | (a) $p \to q$ | $(b) \neg p \rightarrow \neg q$ | $(c) \neg q \rightarrow \neg p$ | (d) None of these | | | | | (a) Process that shows presence of error(b) Process that shows the presence of error and identifying the source of error(c) Process that identifies the source of error and fixes it(d) Process that shows the presence of error and identifying the source of error and fixes it | | | | | | | 96. | If the function $f: R \to A$ given by $f(x) = \frac{x^2}{x^2 + 1}$ is a surjection, then A is equal to | | | | | | | | (a) <i>R</i> | (b) [0, 1] | (c) (0, 1] | (d) [0, 1) | | | | 97. | | If a particle is projected varitcally upwards and is at a height h after t_1 seconds and again t_2 seconds, the its velocity of projection is | | | | | | | (a) gt_1t_2 | (b) $gt_1t_2/2$ | (c) $g(t_1 + t_2)/2$ | (d) $g(t_1 + t_2)$ | | | | 98. | To avoid interference | between channels, Blue | tooth uses | | | | | | (a) DSSS | (b) FHSS (| (c) Both DSSS and FHSS | (d) CDMA | | | | 99. | $\neg \forall x P(x)$ is equivalent to (a) $\exists x \neg P(x)$ (b) $\forall x \neg P(x)$ (c) $\neg \exists x P(x)$ (d) None of these | | | | | | | 100. | | with 7 vertices, number | of spanning tree is at lea | ast | | | | | (a) 64 | (b) 63 | (c) 127 | (d) 128 | | | | 101. | If pth, qth and rth terr | ns of a GP are x , y , z res | spectively, then x^{q-r} y^r | z^{p-q} is equal to | | | | | (a) 0 | (b) 1 | (c) - 1 | (d) None of these | | | | 102 . | Which of these conditi | ions holds for a planar gr | raph ? | | | | | | (a) $v - e + r = 2$ | (b) $v - r + e = 2$ | (c) $e - v + r = 2$ | (d) None of these | | | | 103. | A graph G is called un | nicursal if and only if | | | | | | (a) all vertices of G are of even degree (b) all vertices are of odd | | | dd degree | | | | | | (c) exactly two vertices | s are of even degree | (d) exactly two vertices | s are of odd degree | | | | | | - | | | | | **104**. A relation that is reflexive, antisymmetric and transitive is a/an (a) function (b) equivalence relation (c) partial order (d) None of these **105**. If A is a symmetric matrix and $n \in N$, then A^n is (b) skew-symmetric 106. The value of a so that the function $$f(x) = \begin{cases} \frac{1 - \cos ax}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$$ (a) symmetric be continuous at x = 0 is - $(c) \pm 1$ (d) 0 - In the graph below, what will be the result of DFS starting from the vertex V1? **107**. - (a) V1, V2, V3, V6, V4, V5 - (b) V1, V2, V3, V5, V6, V4 - (c) V1, V2, V4, V3, V5, V6 (d) V1, V2, V3, V5, V4, V6 (d) None of these - If $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ are unit vectors such that the vector $\overrightarrow{\mathbf{a}} + 3\overrightarrow{\mathbf{b}}$ is perpendicular to $7\overrightarrow{\mathbf{a}} 5\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}} 4\overrightarrow{\mathbf{b}}$ is **108**. perpendicular to $7\vec{a} - 2\vec{b}$, then the angle between \vec{a} and \vec{b} is - (b) $\pi/4$ - (d) $\pi/2$ - If the product of n positive integers is unity, then their sum is **109**. - (a) a positive number (c) divisible by n - (b) equal to n + 1/n (c) a diagonal matrix - (d) never less than n - If \overline{X}_1 and \overline{X}_2 are the means of two distributions such that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the mean of the combined 110. distribution, then - (a) $\overline{X} < \overline{X}_1$ - (b) $\overline{X} > \overline{X}_2$ (c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ (d) $\overline{X}_1 < \overline{X} < \overline{X}_2$ - If a matrix A is such that $3A^3 + 2A^2 + 5A + 1 = 0$, then A^{-1} is equal to 111. - (a) $-(3A^2 + 2A + 5)$ - (b) $3A^2 + 2A + 5$ (c) $3A^2 2A 5$ (d) None of these - The ends of the base of an isosceles triangle are at (2a, 0), and (0, a). The equation of one side is x = 2a. 112. The equation of the other side is - (a) x + 2y a = 0 - (b) x + 2y = 2a - (c) 3x + 4y 4a = 0 - (d) 3x 4v + 4a = 0 - The mean age of a combined group of men and women is 25 years. If the mean age of the group of men is **113**. 26 and that of the group of women is 21 then the percentage of men and women in the group is - (a) 60, 40 - (b) 80, 20 - (c) 20, 80 - (d) 40, 60 - 114. A reentrant code is one - (a) that can modify itself (b) that cannot modify itself (c) that is non-shared - (d) None of these - Consider a logical address space of 8 pages of 1024 words each mapped onto a physical memory of 32 **115**. frames. How many bits are there in logical and physical addresses respectively? - (a) 3 and 5 - (b) 10 and 5 - (c) 13 and 15 - (d) 13 and 13 | 116. | 6. If $\frac{2x}{x^3 - 1} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}$, then | | | | | |--------------|---|-----------------|--|-----------------------|--| | | (a) $A = B = C$ | | (c) $A \neq B = C$ | (d) $A \neq B \neq C$ | | | 117. | V.33 modem uses | | | | | | | (a) 64-QAM | (b) 256-QAM | (c) 128-QAM | (d) 32-QAM | | | 118. | 3. A body falling from a height of 10 m rebounds from a hard floor. It it loses 20% of its energy in impact will rise up to | | | | | | | (a) 10 m | (b) 8 m | (c) 5 m | (d) 12 m | | | 119. | You have three coins in your pocket, two fair ones but the third biased with probability of heads p and $1-p$. One coin selected at random drops to the floor, landing heads up. How likely is it is one of the coins? | | | 1 0 1 | | | | (a) <i>p</i> | (b) $1/(1 + p)$ | (c) 1/2 | (d) None of the above | | | 120 . | The cube roots of unity | y | | | | | | (a) are collinear | | (b) Lie on a circle of radius $\sqrt{3}$ | | | | | (c) form an equilateral triangle | | (d) None of these | | | | | | | | | |