JNU MCA - 2004

		1.5
1.	Let [.] denote the greatest integer function, then the value of	$\int [x^2] dx$ is
		0

(a)
$$2 - \sqrt{2}$$

(b)
$$2 + \sqrt{2}$$

(c)
$$1 + \sqrt{2}$$

(a)
$$2-\sqrt{2}$$
 (b) $2+\sqrt{2}$ (c) $1+\sqrt{2}$ (d) 3

2. The value of real θ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is purely imaginary is

(a) $n\pi$ (b) $n\pi\pm\frac{\pi}{2}$ (c) $n\pi\pm\frac{\pi}{3}$ (d) $n\pi\pm\frac{\pi}{6}$

(b)
$$n\pi \pm \frac{\pi}{2}$$

(c)
$$n\pi \pm \frac{\pi}{3}$$

(d)
$$n\pi \pm \frac{\pi}{6}$$

3. If the two circles
$$(x-1)^2 + (y-3)^2 = r^2$$
 and $x^2 + y^2 - 8x + 2y + 8 = 0$, intersect at two distinct points, then

(a)
$$2 < r < 8$$

(b)
$$r < 2$$

(c)
$$8 < r$$

(d)
$$r = 2 \text{ or } r = 8$$

(a)
$$2 < r < 8$$
 (b) $r < 2$ (c) $8 < r$ (d) $r = 2$ or $r < 4$.

The coefficient of $X_1 X_2^2 X_3^3 X_4^4 X_5^5$ in the expansion of $(X_1 + X_2 + X_3 - X_4 + X_5)^5$ is

(a) $1!2!3!4!5$ (b) $15.14.13.12.11$ (c) $\frac{15!}{15}$ (d) $\frac{15!}{1!2!3!4}$

(c)
$$\frac{15!}{15}$$

(d)
$$\frac{15!}{1!2!3!4!5!}$$

Identify the binary tree for which the inorder and postorder traversals are as under **5**.

Inorder: AFCEDB Postorder: FEDCBA

- 6. In a triangle ABC, the angle A is greater than the angle B. If the values of the angles A and B satisfy the equation $3 \sin x - 4 \sin^3 x - k = 0$, 0 < k < 1, then the value of *C* is
 - (a) $\frac{5\pi}{6}$

- The angle between the lines given by the equation $Y^2 \sin^2 \theta xy \sin^2 \theta + X^2 (\cos^2 \theta 1) = 0$ is 7.

- You are allowed to use 20 nodes to construct an AVL-tree (height balanced tree). What is its possible 8. maximum height?
 - (a) 4

(b) 5

(c) 6

(d) 7

9.	The half-life of a radioactive substance is the time required for one-half of the substance to decay. The amount of ^{11}C , an isotope of carbon present at a future time t (in months) is given by $A(t) = 100 \exp [-0.0338 t]$. Thalf-life of the material in months is					
	(a) ln 2	(b) 0.0338	(c) $\frac{\ln 2}{0.338}$	(d) 2 ln 2		
10.	A file of size $n = 100$ takes 6 ms for sorting using Quicksort algorithm. Then approximately how much time would it take to sort a file of size $n = 1000000000$?					
	(a) 24000000 ms	(b) 24 ms	(c) 240000 ms	(d) 18000000 ms		
11.	Solve $z^5 = 1$, for $z^{2\pi/m}$		2-in/5			
		(a) $z = e^{2\pi/n}$, $n = 0, 1, 2,$		(b) $z = e^{2\pi i n/5}$, $n = 0, 1, 2,$		
	,			(d) $z = e^{5\pi i n}$, $n = 0, 1, 2,$		
12 .	On the interval [0, 2	1], the function x^{25} (1	-x) ⁷⁵ takes its maximum	value at the point		
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) 0		
13 .	The straight line $7x$	-2y + 10 = 0,7x + 2	2y - 10 = 0 and $y + 2 = 0$ for	orm		
	(a) obtuse-angled tri	O .	(b) acute-angled tri			
	(c) right-angled tria	•	(d) isosceles triangl			
14.				tored in a linear array h [05049] in the is a [80, 90] stored in the array h ?		
	(a) 4851	(b) 4850	(c) 3330	(d) 4175		
15.	Consider the follow unsigned try (unsigned try (unsigned try try) (n = 1 - try)	ed x , int p , int n)				
	return $(x >> (p - 1 - n))$ and $-(-0 << n)$;					
	What would be the	output of try (x, 8, 5)	for $x = 111011101110111$	0 ?		
	(a) 10111	(b) 11101	(c) 01110	(d) 11011		
16.	of 60°. Ast the same	An observer at an anti-aircraft post A identifies an enemy aircraft due east of his post at an angle of elevation 60°. Ast the same instant a detection post D situated 4 km south of A reports the aircraft at an elevation 30°. The altitude at which the plane is flying is				
	(a) $4\sqrt{3}$	(b) $2/\sqrt{3} \text{ km}$	(c) $\sqrt{6}$	(d) 6 km		
17.		the (ordered) sequenc		Given the reference string (88, 90, 8, 11, s, the total number of tracks traversed by		
	(a) 108	(b) 138	(c) 139	(d) 109		
18.	Let $f, g: R \to R^+$ de	efined by $f(x) = 2x +$	-3 and $g(x) = x^2$. The value			
	(a) $2x^2 + 3$	(b) $2x + 3$	(c) $(2x+3)^2$	(d) $4x^2 + 9$		
19.	Suppose that the expected number of accidents per week at an industrial plant is 4. The number of workers injured in each accident is intendant random variable with a common mean of 2. Assume also that the number of workers injured in each accident is independent of the number of accidents that occur. The expected number of injuries during a week is					
	(a) 2	(b) 4	(c) 6	(d) 8		
20.	(b) allows Virtual Ro (c) allows a user pro	to use all the memory eality programs to ru ogram to run on anotl	n her computer which is con	nected on a network amount of physical memory		

			1 + a 1 1	
21.	If a, b, c are all differ	rent from zero, and Δ	$= \begin{vmatrix} 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c \end{vmatrix}$	s equal to zero, then the value of
	$a^{-1} + b^{-1} + c^{-1}$ is			
	(a) abc	(b) $a^{-1}b^{-1}c^{-1}$	(c) - a - b - c	(d) None of these
22.	The ratio of the altitude diameter of the sphere	_	est volume which can b	e inscribed in a given sphere, to the
	1	(b) $\frac{3}{4}$	9	(d) $\frac{2}{3}$
23 .	Let $G = (V, E)$, $E = \{e1, e2, e3, e4, e5, e6, e7, e8, e10, e11, e12, e13\}$ be a graph with a circuit $C = \{e1, e2, e5, e6, e8, e9, e11\}$. Which of the following may be a cut-set of G ?			a graph with a circuit $C = \{e1, e2,$
	(a) $S = \{e1, e2, e3\}$	ch of the following may	(b) $S = \{e3, e4, e5, e8\}$	
	(c) $S = \{e2, e3, e4, e7, e\}$	9}	(d) $S = \{e4, e5, e6, e10, e10, e10, e10, e10, e10, e10, e10$. e12}
24 .	If $y\sqrt{x^2 + 1} = \log\left[\sqrt{x^2}\right]$			
21.		u_{λ}		
	(a) $-\frac{xy+1}{x^2+1}$	(b) $\frac{xy + 1}{x^2 + 1}$	(c) $-\frac{xy+1}{\sqrt{(x^2+1)}}$	(d) $xy \sqrt{(x^2 + 1)}$
25 .	Which of the following	g partially ordered sets i	s a tree ?	
	· · ·		•	w if w is a substring of v .
		• •		w if w is an initial substring of v .
	- · ·		artially ordered by $v \leq w$	_
26			then x and y respectively	w if v is an initial substring of w
26 .	(a) $\sqrt{10}$, $100\sqrt{10}$			
.=				(d) 1000, 10
27 .	are	on tangents to the circles	$8x^2 + y^2 + 2x + 8y - 23$	$= 0 \text{ and } x^2 + y^2 - 4x - 10y + 19 = 0$
	(a) 4	(b) 3	(c) 2	(d) 1
28 .	Which of the following	* *	(=) =	
	(a) Rational numbers ((b) Positive rational nu	ımber under +
	(c) (1, 3, 5, 7) under \times	mod 8	(d) (1, 2, 3, 4, 5, 6, 7) u	ınder × mod 8
29 .	If f is twice differentia	able function such that	f''(x) = -f(x) and $f'(x)$	$f(x) = g(x)$. Let $f(x) = [f(x)]^2 + [g(x)]^2$.
	Given that $h(5) = 11$, then $h(5) = 11$, the second seco	, ,		
	(a) 22	(b) 11	(c) 16	(d) 0
30.	Let X and Y be indeper	ndent random variables	•	σ_y^2 . Then Var (XY) equals
	(a) $\sigma_x^2 \ \sigma_y^2$		(b) $\sigma_x^2 \ \sigma_y^2 + \mu_x^2 \ \sigma_x^2 + \mu_x^2$	$\frac{1}{2} x \sigma_y^2$
	(c) $\mu_y^2 \ \sigma_x^2 + \mu_x^2 \ \sigma_y^2$		(d) $(\sigma_x + \sigma_y)^2$	
31.	The value of $\lim_{x\to 0} \frac{\int_0^{5x^3} \epsilon}{x^3}$	$e^t dt$ is		
	(a) 0	(b) 1	(c) 5	(d) ∞
32 .	Fetching, decoding and executing of an instruction is broken down into several time intervals. Each of these intervals involving one or more clock periods is called a/an			
	(a) instruction cycle	•	(b) interpretation cycle	
	(c) machine cycle		(d) process cycle	

59.	If p , q , r be three positive numb				
	(a) $< 4pqr$ (b) $< 8pq$	-	(c) $> 8 pqr$		(d) $> 4pqr$ but $< 8pqr$
60.	Observe the following program of struct month	carefully and s	elect the appropria	ate pri	ntf () statement from the options :
	char * month;				
	void main ()				
	{				
	struct month m = ("may"); }				
	(a) printf ("\n month : %s", m.mo	onth);	(b) printf ("\n Mo	onth:9	%s", m → month);
	(c) printf ("\n Month : %s", m.*n	nonth);	(d) printf ("\n Mo	onth:9	%s", *m.month);
61 .	If $x_r = \cos(\pi/2^r) + \sin(\pi/2^r)$, the	$n x_1 x_2 x_3 \dots$	to ∞ is		
	(a) -3 (b) -2		(c) -1		(d) 0
62.	If $A \cap B = \phi$ and $B \cap C = \phi$, then	$P(A \cup B \cup C)$	=		
	(a) $P(A) + P(B) + P(C)$		(b) P (A) P (B) P (C	C)	
	(c) $P(A) P(B) + P(B) P(C) + P(C)$				
63.	following is correct?	atisfying $f(0)$			0>0 for all x , then which of the
	(a) $f''(x) > 0$ for all x (c) $-2 \le f''(x) \le -1$ for all x		(b) $-1 < f''(x) < 0$ (d) $f''(x) < -2$ for	all x	
64.	The encoding scheme that uses (a) bi-phase (b) bipo	-	and zero to repres (c) polar		nary 1 and 0 is (d) unipolar
65 .	In a triangle ABC, if $\cot A$, $\cot B$	and $\cot C$ are	in AP, then $a^2b^2c^2$	are ir	1
	(a) AP (b) GP		(c) HP		(d) None of these
		a^2	a	1	
66 .	The value of the determinant Δ				_
		$\sin(nx) \sin(nx)$	$((n+1) x) \sin((n+1) x)$	1 + 2) x	
	(a) n (b) a		(c) x		(d) None of these
67 .	For $n \in \mathbb{N}$, $3^{2n+2} - 8n - 9$ is divide	sible by			
	(a) 81 (b) 72		(c) 64		(d) 49
68 .	A point P is chosen at random o	n a line <i>AB</i> of	length 2 <i>l</i> . The prol	babiity	$P[AP \times BP) > l^2/2$] is
	(a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$		(c) $\left(1 - \frac{1}{\sqrt{2}}\right)l$		(d) $\frac{1}{\sqrt{2}} I$
	_		(72)		V2
69 .	In a cellular network, the distan	ce between tw	o adjacent hexago		_
	(a) R (b) $R\sqrt{2}$		(c) $R\sqrt{3}$		(d) $R\sqrt{\frac{3}{2}}$
70 .	Solution of equation $e^{\sin x} - e^{-\sin x}$	x = 4 is	(- \	(
	(a) $\sin^{-1} \ln \left(\frac{4 + \sqrt{17}}{2} \right)$ (b) \sin^{-1}	$ \ln\left(\frac{4-\sqrt{17}}{2}\right) $	(c) $\sin^{-1} \left(\frac{4 + \sqrt{17}}{2} \right)$		$(d) \sin^{-1} \left(\frac{4 - \sqrt{17}}{2} \right)$
71.	Two towns A and B are 60 km	apart. A scho	ol is to be built to	o serve	e 150 students from town A and 50
					ts is to be as small as possible, then
	(a) 45 km from town A		(b) 45 km from to	own B	
	(c) town A		(d) town B		

Consider the following inequality $\frac{1}{\sqrt{k}} \int_{1}^{k} \left(\frac{3}{2} \sqrt{x} + 1 - \frac{1}{\sqrt{x}} \right) dx < 4$. The value of k for which the above inequality

72.

84.	The chord joining the points where $x = p$ and $x = q$ on the curve $y = ax^2 + bx + c$ is parallel to the tangent at the point on the curve whose abscissa is				
	(a) $\frac{p-q}{2}$	(b) $\frac{p+q}{2}$	(c) $\frac{pq}{2}$	(d) $a(p+q)$	
85 .	Which one of the follo	wing file allocation met	hods is used by Unix or	perating system ?	
	(a) Contiguous allocati	_	(b) Indexed allocation		
	(c) Linked allocation		(d) Bit Vector		
86.			riable E uniform between 5V and 10V. given the resistance of ty function of the power $W = E^2/R$ dissipated in R is		
	(a) $\frac{1}{5}$, $5 \le w \le 10$	(b) $\frac{1}{75}$, $25 \le w \le 100$	(c) $w^{-\frac{1}{2}}$, $\frac{1}{40} < w < \frac{1}{10}$	(d) $\sqrt{10}w^{-\frac{1}{2}}, \frac{1}{40} < w < \frac{1}{10}$	
87 .	If $x = \log_3 5$, $y = \log_{17}$	25, which of the follow	ing is correct?		
	(a) $x < y$	(b) $x = y$	(c) $x > y$	(d) Not comparable	
88.	The minimum number	of page frames that mu	st be allocated to a proc	ess is defined by	
	(a) Average page fault	rate	(b) paging hardware		
	(c) instruction-set		(d) Large number of ac	ddressing modes	
89 .	If $A + B + C = 2S$, then	$\cos^2 S + \cos^2 (S - A) + c$	$\cos^2(S-B) + \cos^2(S-C)$	$) = 2 + \dots$	
	(a) $\cos A \cos B \cos C$		(b) $2\cos A\cos B\cos C$		
	(c) $\cos(B+C)\cos(B-C)$	· C)	(d) None of these		
90.		ng cases overflow is dete in fixed-point representa		into the sign bit position and carry out	
	(a) Adding two number	rs of the same sign	(b) Adding two opposit	_	
	(c) Adding two unsigned		(d) Subtracting unsigned	ed numbers	
91.	If $\tan \chi = \frac{a-b}{a+b} \cot \frac{c}{2}$, t	76			
		-	(c) $(a+b)\sin\frac{c}{2}$	(d) $(a-c)\tan\frac{c}{2}\csc\frac{c}{2}$	
92.	$\lim_{x \to 0} \left[\frac{x(5^x - 1)}{1 - \cos x} \right] $ is equa	l to			
	(a) $\frac{1}{2}\log 5$	(b) $\frac{1}{5} \log 2$	(c) 2 log 5	(d) 5 log 2	
93 .	The value of x for which	$\cosh \log_3 2, \log_3 (2^x - 5)$ and	$1 \log_3 (2^x - 7/2)$ are in a	arithmetic progression, is	
	(a) 2	(b) 3	(c) 5	(d) 7	
94.	A random variate X ha $P(X = j) = (1 - p) p^{j}$,	~ _			
		0 < <i>p</i> < 1			
		tegers m and n , $P(X > 1)$	·		
	(a) $P(X < m + n)$	(b) $P(X > m)$	(c) $P(X > n)$	(d) $P(X \ge n)$	
95 .	If $\tan A = \frac{(1 - \cos B)}{\sin B}$, the same is $\sin B = \frac{1}{\sin B}$.	hen <i>B</i> equals			
	(a) $\frac{A-n\pi}{2}$	(b) $n\pi - 4$	(c) $2(A - n\pi)$	(d) $\frac{A}{2} - n\pi$	
96.	4			ch contain at most <i>n</i> elements is	
	(a) 2^{2n}		(b) 2 ⁿ		
	(c) 2^{n-1}		(d) 2^{n+1}		

106.	In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in AP , then the length of the third side is			
	(a) $5 + \sqrt{6}$	(b) 5	(c) $3\sqrt{3}$	(d) $5\sqrt{6}$
107.	If a, b, c are co-planar vectors and a, b are non-collinear, then $\begin{vmatrix} c \cdot a & b \cdot a \\ b \cdot a & b \cdot b \end{vmatrix} a + \begin{vmatrix} a \cdot a & c \cdot a \\ a \cdot b & c \cdot b \end{vmatrix} b - ?$			
	(a) $\begin{vmatrix} c \cdot a & b \cdot a \\ b \cdot a & b \cdot b \end{vmatrix} c$	(d) $\begin{vmatrix} a \cdot a & a \cdot b \\ a \cdot b & b \cdot b \end{vmatrix} c$	(c) c	(d) 0
108.	length of the sides of a		o – log 3c) and (log 3c – l	$\log a$) are in AP, then a , b , c are the
	(a) equilateral	(b) acute-angled	(c) right-angled	(d) obtuse-angled
109 .	The newton's method t	for finding the root of ar	= :	- · · · · · · · · · · · · · · · · · · ·
	(a) 1	(b) 0	(c) large	(d) small
110 .	The value of <i>a</i> for which	ch the system of equation		
		,	$(x)^3 y + (a+2)^3 z = 0$	
		ax + (a -	-1) y + (a + 2) z = 0	
	has a non gone colution	n ia	x + y + z = 0	
	has a non-zero solution (a) 1	(b) 0	(c) - 1	(d) None of these
111.	* *	75°, what is the value o	, ,	(u) None of these
111.				$a + c_2\sqrt{2}$
	(a) $(a + c\sqrt{2})$	(b) $\left(\frac{a}{2} + c\sqrt{2}\right)$	(c) $\frac{a+c}{2}$	(d) $\frac{a+c\sqrt{2}}{2}$
112.	$\binom{m+n}{k} = A \sum_{i=0}^{k} \binom{m}{i} \binom{k}{k}$	$\begin{pmatrix} n \\ -i \end{pmatrix}$, where A is		
	(a) $\left(\frac{n}{k}\right)$	(b) 2^{m+n}	(c) 2 ⁿ	(d) 1
113.				and having a magnitude as $ \overrightarrow{\mathbf{b}} $ is
	(a) $7(i+2j+2k)$	(b) $\frac{7}{9}(i+2j+2k)$	(c) $\frac{7}{5}(i+2j+2k)$	(d) $\frac{7}{3}(i+2j+2k)$
114.	In a committee of 47 coffee but not tea is	persons 13 take tea but	t not coffee and 28 take	e tea. The number of persons taking
	(a) 6	(b) 19	(c) 32	(d) 34
115.	-	n the radius is 15 cm an	-	. The rate at which the weight of the 0.3 kg/cc is
	(a) 5π kg/min	(b) $\frac{5}{4\pi}$ kg/min	(c) 6π kg/min	(d) 4.8π kg/min
116.	Consider the language	$L = \{0^n \ 1^m n, m \ge 1\}. \text{ V}$	Which of the following se	ets of production rules generate L ?
	I. $E \rightarrow 0$ E1 0E E1 01 II. $S \rightarrow 0$ A B1; A $\rightarrow 0$ A B 0; B \rightarrow B1 A 1			
	III. $A \rightarrow 0A1 \mid 0$		•	
	IV. $S \rightarrow 0X \mid X1 \mid 01$			
	(a) only I	•	(b) I and II	
	(c) I, II and III		(d) I, II, III and IV	
	•			

117. If $\frac{3+5+7+...+n \text{ terms}}{5+8+11+...+10 \text{ terms}} = 7$, the value of *n* is

(a) 49

(b) 42

(c) 37

(d) 35

118. If an m/m/1 queue, the inter-arrival time distribution is

(a) Erlang

(b) General

(c) Deterministic

(d) Exponential

119. The value of $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}$ is

(a) $\frac{1}{8}$

(b) $\frac{3}{16}$

(c) $\frac{1}{16}$

(d) 3

120. Consider L-C-R circuit which is governed by the differential equations

$$L\frac{d^{2}Q}{dt} + R\frac{dQ}{dt} + \frac{Q}{C} = 0$$

$$I = \frac{dQ}{dt}$$

Writing $\omega^2 = (LC)^{-1}$, $2b = RL^{-1}$, $\omega_0 = \sqrt{\omega^2 - b^2}$ and imposing initial condition $Q(0) = Q_0 I(0) = 0$ leads to the current

(a) $I(t) = \frac{-Q_0}{LC\omega_0} \sin \omega_0 t$

(b) $I(t) = \frac{Q_0 C}{L\omega_0} - tR/2L$

(c) $I(t) = \frac{Q_0}{LC\omega_0} - tR/2L$

(d) $I(t) = \frac{-Q_0}{LC\omega_0} e^{-tR/2L} \sin \omega_0 t$