
AIEEE-2012

PART A: MATHEMATICS

- (1) Statement 1 is false, statement 2 is true
- (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1
- (3) Statement 1 is true statement 2 is true; statement 2 is not a correct explanation for statement 1
- (4) Statement 1 is true, statement 2 is false

4. 2

- Sol. Statement 1 has 20 terms whose sum is 8000 And statement 2 is true and supporting statement 1. $\therefore k^{\text{th}}$ bracket is $(k - 1)^2 + k(k - 1) + k^2 = 3k^2 - 3k + 1$.
- 5. The negation of the statement "If I become a teacher, then I will open a school" is
 (1) I will become a teacher and I will not open a school
 (2) Either I will not become a teacher or I will not open a school
 (3) Neither I will become a teacher nor I will open a school
 (4) I will not become a teacher or I will open a school
 5. 1

Sol.
$$\sim (\sim p \lor q) = p \land \sim q$$

6. If the integral $\int \frac{5 \tan x}{\tan x - 2} dx = x + a \ln |\sin x - 2 \cos x| + k$, then a is equal to (1) -1 (2) -2 (3) 1 (4) 2

6. 4
Sol.
$$\int \frac{5\tan x}{\tan x - 2} dx = \int \frac{5\sin x}{\sin x - 2\cos x} dx \qquad \Rightarrow \int \left[\frac{2(\cos x + 2\sin x) + (\sin x - 2\cos x)}{\sin x - 2\cos x} \right] dx$$

$$= 2\int \left(\frac{\cos x + 2\sin x}{\sin x - 2\cos x} \right) dx + \int dx + k \qquad = 2 \log |\sin x - 2\cos x| + x + k \quad \therefore a = 2$$

7. **Statement 1:** An equation of a common tangent to the parabola $y^2 = 16\sqrt{3}x$ and the ellipse $2x^2 + y^2 = 4$ is $y = 2x + 2\sqrt{3}$.

Statement 2: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a common tangent to the parabola $y^2 = 16\sqrt{3}x$ and the ellipse $2x^2 + y^2 = 4$, then m satisfies $m^4 + 2m^2 = 24$.

- (1) Statement 1 is false, statement 2 is true
- (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1
- (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1
- (4) Statement 1 is true, statement 2 is false

Sol. $y^2 = 16\sqrt{3}x$ $\frac{x^2}{2} + \frac{y^2}{4} = 1$ $y = mx + \frac{4\sqrt{3}}{m}$ is tangent to parabola which is tangent to ellipse $\Rightarrow c^2 = a^2m^2 + b^2$ $\Rightarrow \frac{48}{m^2} = 2m^2 + 4$ $\Rightarrow m^4 + 2m^2 = 24$ $\Rightarrow m^2 = 4$ 8. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$. If u_1 and u_2 are column matrices such that $Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then $u_1 + u_2$ is equal to $(1) \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ $(2) \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ $(3) \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$ $(4) \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ 8. 4

Sol.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 1 \\ 0 \\ 3 & 2 & 1 \end{pmatrix}$$
Let $u_1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$; $u_2 = \begin{bmatrix} d \\ e \\ 1 \\ 1 \end{bmatrix}$

$$Au_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \implies u_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \implies u_2 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} \implies u_1 + u_2 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$
9. If n is a positive integer, then $(\sqrt{3} + 1)^{2n} - (\sqrt{3} - 1)^{2n}$ is
(1) an irrational number
(2) an odd positive integer
(3) an even positive integer
(4) a rational number other than positive integers
(3) an even positive integer
(4) a rational number other than positive integers
(5) an even positive integer
(6) an even positive integer
(7) an irrational number
(1) an irrational number
(2) an odd positive integer
(3) an even positive integer
(4) a rational number other than positive integers
(5) an even positive integer
(6) an even positive integer
(7) an irrational number
(1) $2^{2n} - (\sqrt{3} - 1)^{2n} = \left[(\sqrt{3} + 1)^2 \right]^n - \left[(\sqrt{3} - 1)^2 \right]^n = (4 + 2\sqrt{3})^n - (4 - 2\sqrt{3})^n$
 $= 2^n \left[(2 + \sqrt{3})^n - (2 - \sqrt{3})^n \right]$
 $= 2^{n+1} \left[(0, 2^{n+1}\sqrt{3} + nC_2 2^{n-2}3 + \dots) \right] - \left[nC_0 2^n - nC_1 2^{n-1}\sqrt{3} + nC_2 2^{n-2}3 - \dots \right] \right\}$
 $= 2^{n+1} \left[(0, 2^{n+1}\sqrt{3} + nC_2 3^{n-3}\sqrt{3}\sqrt{3} + \dots) \right] = 2^{n+1}\sqrt{3}$ (some integer)
Which is irrational
10. If 100 times the 100th term of an AP with non zero common difference equals the 50 times its 50th term
(6) 150
(1) 100(T_{100}) = 50(T_{50}) \implies 2[a + 99d] = a + 49d \implies a + 149d = 0 \implies T_{150} = 0
11. In a APQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then the angle R is equal to
(1) $\frac{5\pi}{6}$
(2) $\frac{\pi}{6}$
(3) $\frac{\pi}{4}$
(4) $\frac{3\pi}{4}$
11. 2
Sol. 3 sin P + 4 cos Q = 6 (1)
4 sin Q + 3 cos P = 1 (2)
From (1) and (2) $\frac{2^n}{1}$ is done P < a cos P^n = 37
 $\Rightarrow 9 + 16 + 24 (sin P \cos 0 + \cos P \sin 0) = 37$
 $\Rightarrow 24 \sin (P + Q) = 12$
 $\Rightarrow sin (P + Q) = \frac{1}{2}$
 $\Rightarrow P + Q = \frac{5\pi}{6}$
 $\Rightarrow R = \frac{\pi}{6}$

12. An equation of a plane parallel to the plane x - 2y + 2z - 5 = 0 and at a unit distance from the origin is (1) x - 2y + 2z - 3 = 0 (2) x - 2y + 2z + 1 = 0

$$(3) x - 2y + 2z - 1 = 0 (4) x - 2y + 2z + 5 = 0$$

12.

Equation of plane parallel to x - 2y + 2z - 5 = 0 is x - 2y + 2z + k = 0Sol. (1) perpendicular distance from O(0, 0, 0) to (1) is 1 1.1

$$\frac{|\mathsf{K}|}{\sqrt{1+4+4}} = 1 \qquad \Rightarrow |\mathsf{k}| = 3 \qquad \Rightarrow \mathsf{k} = \pm 3 \qquad \therefore \mathsf{x} - 2\mathsf{y} + 2\mathsf{z} - 3 = 0$$

13. If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then k equals (1) $\frac{29}{5}$ (4) $\frac{11}{5}$

Sol.

3

(1)
$$\frac{29}{5}$$
 (2) 5 (3) 6
3
Point p = $\left(\frac{6+2}{5}, \frac{12+2}{5}\right)$
p = $\left(\frac{8}{5}, \frac{14}{5}\right)$

$$p\left(\frac{8}{5},\frac{14}{5}\right) \text{ lies on } 2x + y = k \qquad \Rightarrow \frac{16}{5} + \frac{14}{5} = k \qquad \Rightarrow k = \frac{30}{5} = 6$$

- Let x_1, x_2, \dots, x_n be n observations, and let \overline{x} be their arithematic mean and σ^2 be their variance. 14. **Statement 1:** Variance of $2x_1$, $2x_2$,, $2x_n$ is $4 \sigma^2$.
 - **Statement 2:** Arithmetic mean of $2x_1, 2x_2, \dots, 2x_n$ is $4\overline{x}$.
 - (1) Statement 1 is false, statement 2 is true
 - (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1
 - (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1
 - (4) Statement 1 is true, statement 2 is false
- 14.

 $\sigma^2 = \sum \frac{x_i^2}{n} - \left(\sum \frac{x_i}{n}\right)^2$ Sol.

Variance of
$$2x_1, 2x_2, ..., 2x_n = \sum \frac{(2x_i)^2}{n} - \left(\sum \frac{2x_i}{n}\right)^2 = 4\left[\sum \frac{x_i^2}{n} - \left(\sum \frac{x_i}{n}\right)^2\right] = 4\sigma^2$$

Statement 1 is true.
A.M. of $2x_1, 2x_2, ..., 2x_n = \frac{2x_1 + 2x_2 + \dots + 2x_n}{n} = 2\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) = 2\overline{x}$
Statement 2 is false.

The population p(t) at time t of a certain mouse species satisfies the differential equation $\frac{dp(t)}{dt} = 0.5 p(t)$ 15. -450. If p(0) = 850, then the time at which the population becomes zero is

(1) 2 ln 18 (2) ln 9 (3)
$$\frac{1}{2}$$
ln 18 (4) ln 18
15. 1
Sol. $\frac{d(p(t))}{dt} = \frac{1}{2}p(t) - 450$
 $d(p(t)) = p(t) - 900$

$$\frac{d(p(t))}{dt} = \frac{1}{2}p(t) - 4$$
$$\frac{d(p(t))}{dt} = \frac{p(t) - 900}{2}$$
$$2\int \frac{d(p(t))}{p(t) - 900} = \int dt$$

 $2 \ln |p(t) - 900| = t + c$ t = 0 \Rightarrow 2 ln 50 = 0 + c ⇒ c = 2 ln 50 \therefore 2 ln |p(t) - 900| = t + 2 ln 50 \Rightarrow 2 ln 900 = t + 2 ln 50 P(t) = 0t = 2 (ln 900 - ln 50) = $2 \ln \left(\frac{900}{50} \right) = 2 \ln 18.$

Let a, b \in R be such that the function f given by f(x) = ln |x| + bx² + ax, x \neq 0 has extreme values at x = -1 16. and x = 2.

Statement 1: f has local maximum at x = -1 and at x = 2.

Statement 2:
$$a = \frac{1}{2}$$
 and $b = \frac{-1}{4}$

- (1) Statement 1 is false, statement 2 is true
- (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1
- (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1
- (4) Statement 1 is true, statement 2 is false

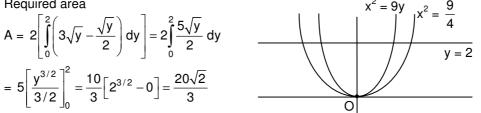
16.

 $f'(x) = \frac{1}{x} + 2b x + a$ Sol.

2

f has extremevalues and differentiable

 \Rightarrow f'(-1) = 0 \Rightarrow a – 2b = 1 \Rightarrow a + 4b = $-\frac{1}{2}$ \Rightarrow a = $\frac{1}{2}$, b = $-\frac{1}{4}$ f'(2) = 0


f''(-1), f''(2) are negative. f has local maxima at -1, 2

The area bounded between the parabolas $x^2 = \frac{y}{4}$ and $x^2 = 9y$, and the straight line y = 2 is 17.

(1)
$$20\sqrt{2}$$
 (2) $\frac{10\sqrt{2}}{3}$ (3) $\frac{20\sqrt{2}}{3}$ (4) $10\sqrt{2}$

17.

Sol. Required area

- 18. Assuming the balls to be identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is (1) 880 (2) 629 (3) 630 (4) 879 4
- 18.

19.

- Number of ways of selecting one or more balls from 10 white, 9 green, and 7 black balls Sol. $= (10 + 1)(9 + 1)(7 + 1) - 1 = 11 \times 10 \times 8 - 1 = 879.$
- If f: R \rightarrow R is a function defined by f(x) = [x] $\cos\left(\frac{2x-1}{2}\right)\pi$, where [x] denotes the greatest integer 19. function, then f is
 - (1) continuous for every real x

- (2) discontinuous only at x = 0
- (3) discontinuous only at non-zero integral values of x (4) continuous only at x = 01

Sol.
$$f(x) = [x] \cos\left(\frac{2x-1}{2}\right) \pi = [x] \cos\left(x - \frac{1}{2}\right) \pi$$

 $= [x] \sin \pi x \text{ is continuous for every real x.
20. If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k is equal to
 $(1)-1$ (2) $\frac{2}{9}$ (3) $\frac{9}{2}$ (4) 0
20. 3
Sol. Any point on $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4} = t$ is $(2t+1, 3t-1, 4t+1)$
And any point on $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1} = s$ is $(s+3, 2s+k, s)$
Given lines are intersecting $\Rightarrow t = -\frac{3}{2}$ and $s = -5$ $\therefore k = \frac{9}{2}$
21. Three numbers are chosen at random without replacement from $\{1, 2, 3, ..., 8\}$. The probability that their minimum is 3, given that their maximum is 6, is
 $(1) \frac{3}{8}$ (2) $\frac{1}{5}$ (3) $\frac{1}{4}$ (4) $\frac{2}{5}$
21. 2
22. Let A be the event that maximum is 6.
B be event that minimum is 3
P(A) = $\frac{^{5}C_{2}}{a_{C_{1}}}$ (the numbers < 6 are 5)
P(B) = $\frac{^{5}C_{2}}{a_{C_{1}}}$ (the numbers > 3 are 5)
P(A \cap B) = $\frac{\frac{z}{C_{1}}}{\frac{z}{C_{1}}}$ is real, then the point represented by the complex number z lies
(1) either on the real axis or on a circle passing through the origin
(2) on a circle with contre at the origin
(3) either on the real axis or on a circle not passing through the origin
(4) on the imaginary axis
21. Let $z = x + iy$ (: $x \neq 1$ as $z \neq 1$)
 $x^{2} = (x^{2} - y^{2}) + i(2xy)$
 $\frac{z^{2}}{z^{2}}$ is real \Rightarrow its imaginary part = 0
 $\Rightarrow y(x^{2} + y^{2} - 2x) = 0$
 $\Rightarrow y(x^{2} + y^{2} - 2x) = 0$$

Let P and Q be 3×3 matrices with P \neq Q. If P³ = Q³ and P²Q = Q²P, then determinant of 23. $(P^2 + Q^2)$ is equal to (1) - 2(2) 1 (3) 0 (4) - 123. $\begin{array}{l} 3 \\ P^{3} = Q^{3} \\ P^{3} - P^{2}Q = Q^{3} - Q^{2}P \\ P^{2}(P - Q) = Q^{2} (Q - P) \\ P^{2}(P - Q) + Q^{2} (P - Q) = O \\ (P^{2} + Q^{2})(P - Q) = O \qquad \Rightarrow |P^{2} + Q^{2}| = 0 \end{array}$ 3 Sol. If $g(x) = \int_{0}^{x} \cos 4t \, dt$, then $g(x + \pi)$ equals 24. (1) $\frac{g(x)}{g(\pi)}$ (2) $g(x) + g(\pi)$ (3) $g(x) - g(\pi)$ (4) $g(x) \cdot g(\pi)$ 24. 2 or 4 $g(x) = \int \cos 4t \, dt$ Sol. $\Rightarrow g(x) = \frac{\sin 4x}{4} + k \qquad \Rightarrow g(x) = \frac{\sin 4x}{4} \ [\because g(0) = 0]$ \Rightarrow g'(x) = cos 4x $g(x + \pi) = g(x) + g(\pi) = g(x) - g(\pi)$ (: $g(\pi) = 0$) 25. The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is (1) $\frac{10}{3}$ (2) $\frac{3}{5}$ (3) $\frac{6}{5}$ (4) $\frac{5}{3}$ 25. Let (h, k) be centre. $(h-1)^{2} + (k-0)^{2} = k^{2} \implies h = 1$ Sol. $\left(h-2\right)^2+\left(k-3\right)^2=k^2 \quad \Longrightarrow k=\frac{5}{3}$ (h, k) (2, 3)k \therefore diameter is $2k = \frac{10}{3}$ 26. Let X = {1, 2, 3, 4, 5}. The number of different ordered pairs (Y, Z) that can be formed such that $Y \subseteq X, Z$ \subseteq X and Y \cap Z is empty, is (2) 3⁵ $(3) 2^5$ $(1) 5^2$ $(4) 5^3$ 26. 2 Sol. $Y \subseteq X, Z \subseteq X$ Let $a \in X$, then we have following chances that $\begin{array}{ll} (1) \ a \in \ Y, & a \in \ Z \\ (2) \ a \notin \ Y, & a \in \ Z \end{array}$ $(3) a \in Y, \quad a \notin Z$ (4) a ∉ Y, a ∉ Z We require $Y \cap Z = \phi$ Hence (2), (3), (4) are chances for 'a' to satisfy $Y \cap Z = \phi$. \therefore Y \cap Z = ϕ has 3 chances for a. Hence for five elements of X, the number of required chances is $3 \times 3 \times 3 \times 3 \times 3 = 3^{5}$

27. An ellipse is drawn by taking a diameter of the circle $(x - 1)^2 + y^2 = 1$ as its semiminor axis and a diameter of the circle $x^2 + (y - 2)^2 = 4$ as its semi-major axis. If the centre of the ellipse is the origin and its axes are the coordinate axes, then the equation of the ellipse is

(1)
$$4x^2 + y^2 = 4$$
 (2) $x^2 + 4y^2 = 8$ (3) $4x^2 + y^2 = 8$ (4) $x^2 + 4y^2 = 16$
27. 4
Sol. Semi minor axis b = 2
Semi major axis a = 4
Equation of ellipse $= \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\Rightarrow \frac{x^2}{16} + \frac{y^2}{4} = 1$
 $\Rightarrow x^2 + 4y^2 = 16$.
28. Consider the function $f(x) = |x - 2| + |x - 5|, x \in \mathbb{R}$.
Statement 1: $f'(4) = 0$
Statement 2: f is continuous in [2, 5], differentiable in (2, 5) and $f(2) = f(5)$.
(1) Statement 1 is false, statement 2 is true; statement 2 is a correct explanation for statement 1
(3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1
(4) Statement 1 is true, statement 2 is false
28. 2
Sol. $f(x) = 7 - 2x; \ x < 2$
 $= 3; \ 2 \le x \le 5$
 $= 2x - 7; \ x > 5$
 $f(x)$ is constant function in [2, 5]
f is continuous in [2, 5] and differentiable in (2, 5) and $f(2) = f(5)$
by Rolle's theorem f'(4) = 0
 \therefore Statement 2 and statement 1 both are true and statement 2 is correct explanation for statement
29. A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a

29. A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is

1.

$$\begin{array}{cccc} (1) & -\frac{1}{4} \\ 3 \end{array} \qquad (2) -4 \\ (3) -2 \\ (4) & -\frac{1}{2} \\ \end{array}$$

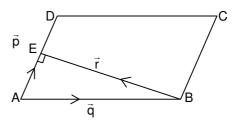
29.

30.

Sol. Equation of line passing through (1, 2) with slope m is y - 2 = m(x - 1)

Area of
$$\triangle OPQ = \frac{(m-2)^2}{2|m|}$$

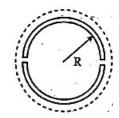
$$\Delta = \frac{m^2 + 4 - 4m}{2m} \qquad \Delta = \frac{m}{2} + \frac{2}{m} - 2$$

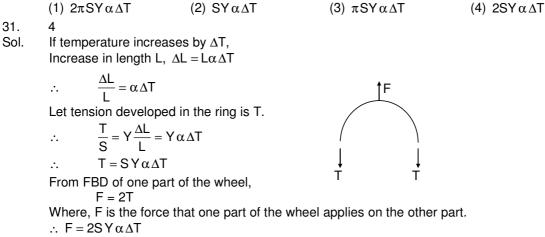

$$\Delta \text{ is least if } \frac{m}{2} = \frac{2}{m} \qquad \Rightarrow m^2 = 4 \qquad \Rightarrow m = \pm 2 \qquad \Rightarrow m = -2$$

30. Let ABCD be a parallelogram such that $\overrightarrow{AB} = \vec{q}, \overrightarrow{AD} = \vec{p}$ and $\angle BAD$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} is given by

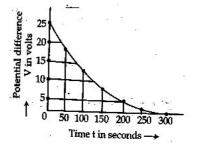
(1)
$$\vec{r} = 3\vec{q} - \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$$

(2) $\vec{r} = -\vec{q} + \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right)\vec{p}$
(3) $\vec{r} = \vec{q} - \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right)\vec{p}$
(4) $\vec{r} = -3\vec{q} + \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$
2


 \overrightarrow{AE} = vector component of \vec{q} on \vec{p} Sol.


$$\overrightarrow{\mathsf{AE}} = \frac{\left(\vec{p} \cdot \vec{q}\right)}{\left(\vec{p} \cdot \vec{q}\right)} \vec{p} \qquad \therefore \text{ From } \Delta \mathsf{ABE}; \ \overrightarrow{\mathsf{AB}} + \overrightarrow{\mathsf{BE}} = \overrightarrow{\mathsf{AE}}$$
$$\Rightarrow \vec{q} + \vec{r} = \frac{\left(\vec{p} \cdot \vec{q}\right) \vec{p}}{\left(\vec{p} \cdot \vec{q}\right)} \qquad \Rightarrow \vec{r} = -\vec{q} + \frac{\left(\vec{p} \cdot \vec{q}\right)}{\left(\vec{p} \cdot \vec{p}\right)} \vec{p}$$

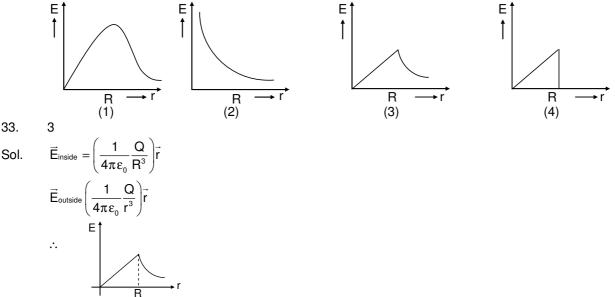
PART B: PHYSICS


31. A wooden wheel of radius R is made of two semicircular parts (see figure); The two parts are held together by a ring made of a metal strip of cross sectional area S and length L. L is slightly less than $2\pi R$. To fit the ring on the wheel, it is heated so that its temperature rises by ΔT and it just steps over the wheel. As it cools down to surrounding temperature, it presses the semicircular parts together. If the coefficient of linear expansion of the metal is α , and its Youngs' modulus is Y, the force that one part of the wheel applies on the other part is :

- 32. The figure shows an experimental plot for discharging of a capacitor in an R-C circuit. The time constant τ of this circuit lies between: (2) 0 and 50 sec
 - (1) 150 sec and 200 sec
 - (3) 50 sec and 100 sec

(4) 100 sec and 150 sec

32.


4

For discharging of an RC circuit, Sol. $V = V_{\alpha} e^{-t/\tau}$

So, when
$$V = \frac{V_0}{2}$$
$$\frac{V_0}{2} = V_0 e^{-t/\tau}$$
$$\ln \frac{1}{2} = -\frac{t}{\tau} \Rightarrow \tau = \frac{t}{\ln 2}$$

From graph when $V = \frac{V_0}{2}$, t = 100 s $\therefore \tau = \frac{100}{\ln 2} = 144.3$ sec

33. In a uniformly charged sphere of total charge Q and radius R, the electric field E is plotted as a function of distance from the centre. The graph which would correspond to the above will be

34. An electromagnetic wave in vacuum has the electric and magnetic fields \vec{E} and \vec{B} , which are always perpendicular to each other. The direction of polarization is given by \vec{X} and that of wave propagation by \vec{k} . Then :

(1) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$ (2) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$ (3) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$ (4) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$ 3

- 34.
- Sol. Direction of polarization is parallel to magnetic field,
 - ∴ X̃∥B̃

and direction of wave propagation is parallel to $\vec{E} \times \vec{B}$

∴ Ķ ∥Ē×Ē

35. If a simple pendulum has significant amplitude (up to a factor of 1/e of original) only in the period between t = Os to $t = \tau s$, then τ may be called the average life of the pendulum. When the spherical bob of the pendulum suffers a retardation (due to viscous drag) proportional to its velocity, with 'b' as the constant of proportionality, the average life time of the pendulum is (assuming damping is small) in seconds:

(1)
$$\frac{0.693}{b}$$
 (2) b (3) $\frac{1}{b}$ (4) $\frac{2}{b}$
35. 4
Sol. As retardation = bv
 \therefore retarding force = mbv
 \therefore net restoring torque when angular displacement is θ is given by
 $= - \operatorname{mg} \ell \sin \theta + \operatorname{mbv} \ell$
 \therefore $|\alpha = - \operatorname{mg} \ell \sin \theta + \operatorname{mbv} \ell$
where, $I = m \ell^2$
 \therefore $\frac{d^2\theta}{dt^2} = \alpha = -\frac{g}{\ell} \sin \theta + \frac{bv}{\ell}$
for event the conductor of the scheme differential evention will be

for small damping, the solution of the above differential equation will be

 $\theta = \theta_0 e^{-\frac{bt}{2}} \sin(wt + \phi)$ ÷.

angular amplitude will be = $\theta \cdot e^{\frac{-bt}{2}}$

According to question, in τ time (average life-time),

angular amplitude drops to $\frac{1}{2}$ value of its original value (θ)

$$\therefore \qquad \frac{\theta_0}{e} = \theta_0 e^{-\frac{6\tau}{2}}$$
$$\frac{6\tau}{2} = 1$$
$$\therefore \qquad \tau = \frac{2}{b}$$

÷.

36. Hydrogen atom is excited from ground state to another state with principal quantum number equal to 4. Then the number of spectral lines in the emission spectra will be (1) 6 (0)

$$(1) 2 (2) 3 (3) 5 (4) 6$$

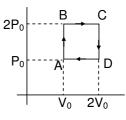
36. 4

Sol. Number of spectral lines from a state n to ground state is

$$=\frac{n(n-1)}{2}=6.$$

- 37. A coil is suspended in a uniform magnetic field, with the plane of the coil parallel to the magnetic lines of force. When a current is passed through the coil it starts oscillating; it is very difficult to stop. But if an aluminium plate is placed near to the coil, it stops. This is due to :
 - (1) development of air current when the plate is placed.
 - (2) induction of electrical charge on the plate
 - (3) shielding of magnetic lines of force as aluminium is a paramagnetic material.
 - (4) electromagnetic induction in the aluminium plate giving rise to electromagnetic damping.
- 37.

4


- Oscillating coil produces time variable magnetic field. It cause eddy current in the aluminium plate which Sol. causes anti-torque on the coil, due to which is stops.
- 38. The mass of a spaceship is 1000 kg. It is to be launched from the earth's surface out into free space. The value of 'g' and 'R' (radius of earth) are 10 m/s² and 6400km respectively. The required energy for this work will be; (

(1)
$$6.4 \times 10^{11}$$
 Joules (2) 6.4×10^{8} Joules (3) 6.4×10^{9} Joules (4) 6.4×10^{10} Joules 4

- 38.
- Sol. To launch the spaceship out into free space, from energy conservation,

$$\frac{-GMm}{R} + E = 0$$
$$E = \frac{GMm}{R} = \left(\frac{GM}{R^2}\right)mR = mgR$$
$$= 6.4 \times 10^{10} \text{ J}$$

Helium gas goes through a cycle ABCDA (consisting of two isochoric and 39. two isobaric lines) as shown in figure. Efficiency of this cycle is nearly: (Assume the gas to be close to ideal gas)

39.

1

Work done in complete cycle = Area under P-V graph Sol. $= P_0 V_0$ from A to B, heat given to the gas

$$= nC_{v}\Delta T = n\frac{3}{2}R\Delta T = \frac{3}{2}V_{0}\Delta P = \frac{3}{2}P_{0}V_{0}$$

from B to C, heat given to the system
$$= nC_{p}\Delta T = n\left(\frac{5}{2}R\right)\Delta T$$
$$= \frac{5}{2}(2P_{0})\Delta V = 5P_{0}V_{0}$$

from O to D and D to A bost is missioned.

from C to D and D to A, heat is rejected.

efficiency,
$$\eta = \frac{\text{work done by gas}}{\text{heat given to the gas}} \times 100$$

 $\eta = \frac{P_0 V_0}{\frac{3}{2} P_0 V_0 + 5 P_0 V_0} = 15.4\%$

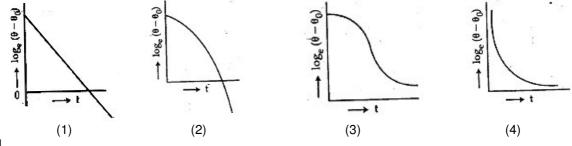
40. In Young's double slit experiment, one of the slit is wider than other, so that the amplitude of the light from one slit is double of that from other slit. If Im be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by (2) $\frac{I_m}{3} \left(1 + 2\cos^2 \frac{\phi}{2} \right)$ (3) $\frac{I_m}{5} \left(1 + 4\cos^2 \frac{\phi}{2} \right)$ (4) $\frac{I_m}{9} \left(1 + 8\cos^2 \frac{\phi}{2} \right)$

(1)

40. 4 Let $A_1 = A_0, A_2 = 2A_0$ If amplitude of resultant wave is A then Sol. $A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\phi$

For maximum intensity,

 $\frac{I_m}{9}(4+5\cos\phi)$


$$A_{max}^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}$$

$$\therefore \qquad \frac{A^{2}}{A_{max}^{2}} = \frac{A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\phi}{A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}}$$

$$= \frac{A_{0}^{2} + 4A_{0}^{2} + 2(A_{0})(2A_{0})\cos\phi}{A_{0}^{2} + 4A_{0}^{2} + 2(A_{0})(2A_{0})}$$

$$\frac{I}{I_{m}} = \frac{5 + 4\cos\phi}{9} = \frac{1 + 8\cos^{2}(\phi/2)}{9}$$

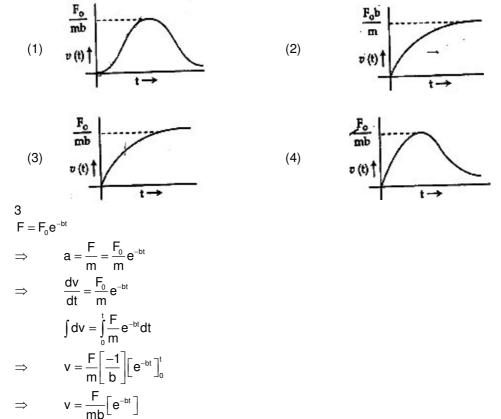
41. A liquid in a beaker has temperature $\theta(t)$ at time t and θ_0 is temperature of surroundings, then according to Newton's law of cooling the correct graph between $\log_e (\theta - \theta_0)$ and t is

41. 1

Sol. According to Newtons law of cooling.

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} \propto -(\theta - \theta_0)$$

$$\Rightarrow \qquad \frac{d\theta}{dt} = -k(\theta - \theta_0)$$
$$\int \frac{d\theta}{\theta - \theta_0} = \int -k \, dt$$
$$\Rightarrow \qquad \ln(\theta - \theta_0) = -kt + c$$


Hence the plot of $ln(\theta - \theta_0)$ vs t should be a straight line with negative slope.

42.

42.

Sol.

A particle of mass m is at rest at the origin at time t = 0. It is subjected to a force F (t) = F_0e^{-bt} in the x direction. Its speed v(t) is depicted by which of the following curves?

So, velocity increases continuously and attains a maximum value of $v = \frac{F}{mb}$ as $t \to \infty$.

43. Two electric bulbs marked 25W – 220V and 100W – 220V are connected in series to a 440Vsupply. Which of the bulbs will fuse?

(1) both (2) 100 W (3) 25 W (4) neither

43.

and

Sol. Resistances of both the bulbs are

v = 0 at t = 0

 $v \rightarrow \frac{F}{mb}$ as $t \rightarrow \infty$

$$R_{1} = \frac{V^{2}}{P_{1}} = \frac{220^{2}}{25}$$
$$R_{2} = \frac{V^{2}}{P_{2}} = \frac{220^{2}}{100}$$
Hence $R_{1} > R_{2}$

When connected in series, the voltages divide in them in the ratio of their resistances. The voltage of 440 V devides in such a way that voltage across 25 w bulb will be more than 220 V. Hence 25 w bulb will fuse.

44. Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are 3% each, then error in the value of resistance of the wire is

(1) 6%
(2) zero
(3) 1%
(4) 3%

44.

1

L V

Sol.

45. A boy can throw a stone up to a maximum height of 10 m. The maximum horizontal distance that the boy can throw the same stone up to will be (1) $20\sqrt{2}$ m (2) 10 m (3) $10\sqrt{2}$ m (4) 20 m

45.

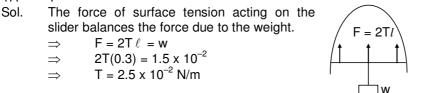
Sol. maximum vertical height = $\frac{u^2}{2g} = 10 \text{ m}$ Horizontal range of a projectile = $\frac{u^2 \sin 2\theta}{g}$ Range is maximum when $\theta = 45^0$ Maximum horizontal range = $\frac{u^2}{g}$ Hence maximum horizontal distance = 20 m.

46. This question has statement 1 and statement 2. Of the four choices given after the statements, choose the one that best describes the two statements Statement 1 : Davisson – germer experiment established the wave nature of electrons.

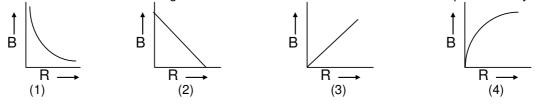
Statement 2 : If electrons have wave nature, they can interfere and show diffraction.

- (1) Statement 1 is false, Statement 2 is true
- (2) Statement 1 is true, Statement 2 is false
- (3) Statement 1 is true, Statement 2 is the correct explanation for statement 1
- (4) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation for statement 1.

46.


3

Sol. Davisson – Germer experiment showed that electron beams can undergo diffraction when passed through atomic crystals. This shows the wave nature of electrons as waves can exhibit interference and diffraction.


47. A thin liquid film formed between a U-shaped wire and a light slider supports a weight of 1.5×10^{-2} N (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid film is (1) 0.0125 Nm⁻¹ (2) 0.1 Nm⁻¹ (3) 0.05 Nm⁻¹ (4) 0.025 Nm⁻¹

47. 4

48. A charge Q is uniformly distributed over the surface of non conducting disc of radius R. The disc rotates about an axis perpendicular to its plane and passing through its centre with an angular velocity ω. As a result of this rotation a magnetic field of induction B is obtained at the centre of the disc. If we keep both the amount of charge placed on the disc and its angular velocity to be constant and vary the radius of the disc then the variation of the magnetic induction at the centre of the disc will be represented by the figure

48. Sol.

Consider ring like element of disc of radius r and thickness dr. If σ is charge per unit area, then charge on the element

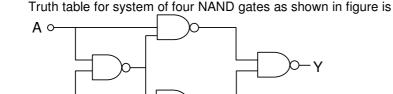
 $dq = \sigma(2\pi r \, dr)$

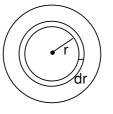
current 'i' associated with rotating charge dq is

$$i = \frac{(dq)w}{2\pi} = \sigma w r dr$$

Magnetic field dB at center due to element

$$dB = \frac{\mu_0 i}{2r} = \frac{\mu_0 \sigma \omega dr}{2}$$
$$B_{net} = \int dB = \frac{\mu_0 \sigma \omega}{2} \int_0^R dr = \frac{\mu_0 \sigma \omega R}{2}$$
$$\Rightarrow \qquad B_{net} = \frac{\mu_0 Q \omega}{2\pi R} \qquad \left[\because Q = \sigma \pi R^2\right]$$


So if Q and w are unchanged then


$$B_{net} \propto \frac{1}{R}$$

Hence variation of B_{net} with R should be a rectangular hyperbola as represented in (1).

49.

Βo

Α	В	Υ			
0	0	0			
0	1	1			
1	0	1			
1	1	0			
(1)					

Α	В	Υ			
0	0	0			
0	1	0			
1	0	1			
1	1	1			
(2)					

Α	В	`
0	0	
0	1	
1	0	(
1	1	(
	(3)	

Α	В	Υ			
0	0	1			
0	1	0			
1	0	0			
1	1	1			
(4)					

49. Sol. 1

Α	В	у	y 1	y 2	У
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	0

50. A radar has a power of 1 Kw and is operating at a frequency of 10 GHz. It is located on a mountain top of height 500 m. The maximum distance upto which it can detect object located on the surface of the earth (Radius of earth = 6.4×10^6 m) is (1) 80 km (2) 16 km (3) 40 km (4) 64 km

50.

52. Sol.

1 Maximum distance on earth where object can be Sol. detected is d, then $(h+R)^2 = d^2 + R^2$ $d^2 = h^2 + 2Rh$ \Rightarrow $h \ll R$, \Rightarrow $d^2 = 2hR$ since $d = \sqrt{2(500)(6.4 \times 10^6)} = 80 \text{ km}$ \Rightarrow

Assume that a neutron breaks into a proton and an electron. The energy released during this process is (Mass of neutron = 1.6725×10^{-27} kg; mass of proton = 1.6725×10^{-27} kg; mass of electron = 9×10^{-31} 51. kg)

(1) 0.73 MeV (2) 7.10 MeV (3) 6.30 MeV (4) 5.4 MeV 51. 1 Sol. $\Delta m = (m_{_{\rm P}} + m_{_{\rm e}}) - m_{_{\rm n}}$ $= 9 \times 10^{-31}$ kg.

Energy released = $(9 \times 10^{-31} \text{ kg})c^2$ joules = $\frac{9 \times 10^{-31} \times (3 \times 10^8)^2}{1.6 \times 10^{-13}}$ MeV = 0.73 MeV.

52. A Carnot engine, whose efficiency is 40%, takes in heat from a source maintained at a temperature of 500 K It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be de lerger then

(1) efficiency of Carnot engine cannot be made larger than 50%
(2) 1200 K (3) 750 K (4) 600 K

$$\frac{40}{100} = \frac{500 - T_S}{500}$$
, $T_S = 300 \text{ K}$
 $\frac{600}{100} = \frac{T - 300}{T} \Rightarrow T = 750 \text{ K}$

53. This question has statement 1 and statement 2. Of the four choices given after the statements, choose the one that best describes the two statements.

If two springs S_1 and S_2 of force constants k_1 and k_2 , respectively, are stretched by the same force, it is found that more work is done on spring S_1 than on spring S_2 . **Statement 1 :** If stretched by the same amount, work done on S_1 , will be more than that on S_2 Statement 2 : $k_1 < k_2$ (1) Statement 1 is false, Statement 2 is true (2) Statement 1 is true, Statement 2 is false (3) Statement 1 is true, Statement 2 is the correct explanation for statement 1 (4) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation for statement 1. 53. Sol. $F = K_1S_1 = K_2 S_2$ $W_1 = FS_1, W_2 = FS_2$ $K_1S_1^2 > K_2S_2^2$ $S_1 > S_2$ $K_1 < K_2$ $W \propto K$ $W_1 < W_2$ 54. Two cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 , respectively. Their speeds are such that they make complete circles in the same time t. The ratio of their centripetal acceleration is (1) $m_1r_1 : m_2r_2$ (2) $m_1 : m_2$ (3) $r_1 : r_2$ (4) 1 : 154. 3 Sol. a∝r 55. A cylindrical tube, open at both ends, has a fundamental frequency, f, in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of the air-column is now (3) $\frac{3f}{4}$ (2) $\frac{f}{2}$ (1) f (4) 2f 55. 1 $f_0 = \frac{v}{2\ell}$ Sol. $f_{\rm C} = \frac{\rm V}{2\ell}$ 56. An object 2.4 m in front of a lens forms a sharp image on a film 12 cm behind the lens. A glass plate 1cm thick, of refractive index 1.50 is interposed between lens and film with its plane faces parallel to film. At what distance (from lens) should object be shifted to be in sharp focus on film? (1) 7.2 m (2) 2.4 m (3) 3.2 m (4) 5.6 m 56. 4 Sol. Case I: u = -240cm, v = 12, by Lens formula $\frac{1}{f} = \frac{7}{80}$ Case II: v = $12 - \frac{1}{3} = \frac{35}{3}$ (normal shift = $1 - \frac{2}{3} = \frac{1}{3}$) $f = \frac{7}{80}$ u = 5.6 57. A diatomic molecule is made of two masses m_1 and m_2 which are separated by a distance r. If we calculate its rotational energy by applying Bohr's rule of angular momentum guantization, its energy will be given by (n is an integer)

(1)
$$\frac{(m_1 + m_2)^2 n^2 h^2}{2m_1^2 m_2^2 r^2}$$
 (2) $\frac{n^2 h^2}{2(m_1 + m_2)r^2}$ (3) $\frac{2n^2 h^2}{(m_1 + m_2)r^2}$ (4) $\frac{(m_1 + m_2)n^2 h^2}{2m_1 m_2 r^2}$

57.

4

Sol.
$$r_1 = \frac{m_2 r}{m_1 + m_2}; r_2 = \frac{m_1 r}{m_1 + m_2}$$

 $(I_1 + I_2)\omega = \frac{nh}{2\pi} = n\hbar$
 $K.E = \frac{1}{2}(I_1 + I_2)\omega^2 = \frac{n^2\hbar^2(m_1 + m_2)}{2m_1m_2r^2}$

A spectrometer gives the following reading when used to measure the angle of a prism. 58. Main scale reading: 58.5 degree Vernier scale reading : 09 divisions Given that 1 division on main scale corresponds to 0.5 degree. Total divisions on the vernier scale is 30 and match with 29 divisions of the main scale. The angle of the prism from the above data (1) 58.59° (2) 58.77° (3) 58.65° (4) 59° 58 3

Sol. L.C =
$$\frac{1}{60}$$

Total Reading = $585 + \frac{9}{60} = 58.65$

59. This question has statement 1 and statement 2. Of the four choices given after the statements, choose the one that best describes the two statements.

An insulating solid sphere of radius R has a uniformly positive charge density p. As a result of this uniform charge distribution there is a finite value of electric potential at the centre of the sphere, at the surface of the sphere and also at a point out side the sphere. The electric potential at infinity is zero.

Statement 1: When a charge q is taken from the centre to the surface of the sphere, its potential energy an cł

hanges by
$$\frac{41}{3\epsilon_0}$$

Statement 2: The electric field at a distance r(r < R) from the centre of the sphere is $\frac{\rho r}{3\epsilon_0}$.

- (2) Statement 1 is true, Statement 2 is false
- (3) Statement 1 is false, Statement 2 is true

 πr^3

(4) Statement 1 is true, Statement 2 is the correct explanation for statement 1

59. Sol.

$$\oint \vec{E} \cdot \vec{d}A = \frac{1}{\varepsilon_0} \left(\rho \times \frac{4}{3} \right)$$
$$E = \frac{\rho r}{3\varepsilon_0}$$

Statement 2 is correct

$$\Delta PE = (V_{sur} - V_{cent})q = -\frac{q}{6\epsilon_0}\rho R^2$$

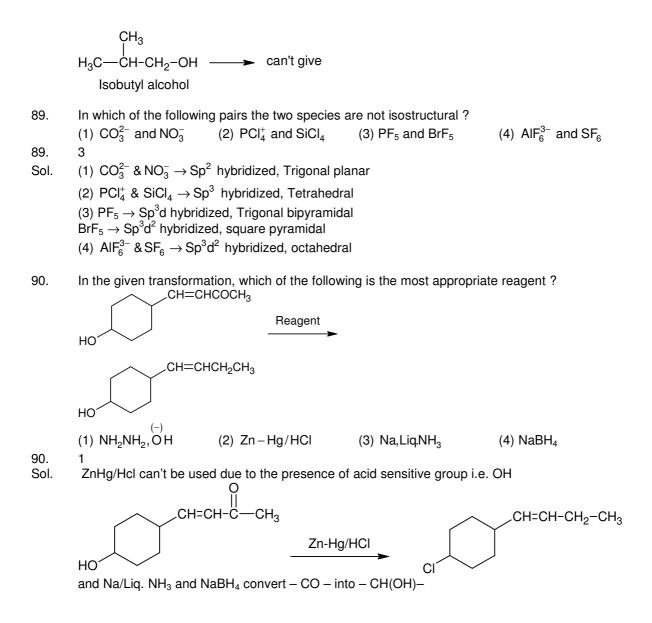
Statement 1 is incorrect

60. Proton, Deuteron and alpha particle of the same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively r_p , r_d and r_{α} . Which one of the following relations is correct?

(1)
$$r_{\alpha} = r_{p} = r_{d}$$

60. 2
Sol. $r = \frac{\sqrt{2mK}}{Bq}$
 $r \propto \frac{\sqrt{m}}{q}$
(2) $r_{\alpha} = r_{p} < r_{d}$
(3) $r_{\alpha} > r_{d} > r_{p}$
(4) $r_{\alpha} = r_{d} > r_{p}$

 $r_{\alpha} = r_{p} < r_{d}$


PART C: CHEMISTRY

61.	Which among the following will be named as dibromidobis(ethylene diamine)chromium(III) bromide ?										
	(1) $\left[Cr(en)_3 \right] Br_3$ (2) $\left[Cr(en)_2 Br_2 \right] Br$	(3) [Cr(en)Br ₄]	(4) [Cr(en)Br ₂]Br								
61.	2										
Sol.	$\left[Cr(en)_2 Br_2 \right] Br$ – dibromido bis (ethylene diamine)chromium(III) bromide										
62.	Which method of purification is represented by the following equation :										
	$\operatorname{Ti}(s) + 2I_2(g) \xrightarrow{523K} \operatorname{Ti}_4(g) \xrightarrow{1700K} \operatorname{Ti}(s) +$	⊦2l ₂ (g)									
<u> </u>	(1) zone refining (2) cupellation	(3) Poling	(4) Van Arkel								
62. Sol.	4 Van Arkel method										
	$Ti(s) + 2l_2(g) \xrightarrow{523K} Til_4(g)$										
	$\operatorname{Til}_{4}(g) \xrightarrow{1700 \text{ K}} \operatorname{Ti}(s) + 2\operatorname{I}_{2}(g)$										
	+(0) () 2(0)										
63.	Lithium forms body centred cubic structure. The of the lithium will be :	he length of the side of its	unit cell is 351 pm. Atomic radius								
	(1) 75 pm (2) 300 pm	(3) 240 pm	(4) 152 pm								
63.	4										
Sol.	For BCC, $\sqrt{3}a = 4r$										
	$r = \frac{\sqrt{3} \times 351}{4} = 152 pm$										
64.	The molecule having smallest bond angle is : (1) NCl ₃ (2) AsCl ₃	(3) SbCl ₃	(4) PCl ₃								
64.	3		() <u>-</u>								
Sol.	As the size of central atom increases lone pair bond pair repulsions increases so, bond angle decreases										
65.	Which of the following compounds can be det	ected by Molisch's test?									
65.	(1) Nitro compounds (2) Sugars	(3) Ámines	(4) Primary alcohols								
Sol.	Molisch's Test : when a drop or two of alcoh then conc. H_2SO_4 is added along the sides of of two liquids.										
66.	The incorrect expression among the following		N.								
	(1) $\frac{\Delta G_{\text{system}}}{\Delta S_{\text{total}}} = -T$	(2) In isothermal proce	$\text{ess} \text{w}_{\text{reversible}} = -nRT \ln \frac{V_{\text{f}}}{V_{\text{i}}}$								
	(3) $InK = \frac{\Delta H^0 - T\Delta S^0}{RT}$	(4) $K = e^{-\Delta G^0 / RT}$									
66.	3										
Sol.	$\Delta G^{\circ} = -RTIn K and \Delta G^{0} = \Delta H^{0} - T\Delta S^{0}$										

67.	The density of a solution 1.15 g/mL. The molarity		g 120 g of urea (mol. M	ass = 60 u) in 1000g of water is
07	(1) 0.50 M	(2) 1.78 M	(3) 1.02 M	(4) 2.05 M
67. Sol.	4 Total weight of solution	= 1000 + 120 = 1120 g		
	Molarity = $\frac{120}{60} \times \frac{100}{1120}$	00 1.15 = 2.05M		
68.	The species which can (1) LiAlH ₄	best serve as an initiator (2) HNO ₃	r for the cationic polymer (3) AICl ₃	ization is : (4) BuLi
68. Sol.	3	the cationic polymerization		
69. 60	(1) NaNO ₃	on thermal decomposition (2) KCIO ₃	1 yields a basic as well a (3) CaCO ₃	s an acidic oxide ? (4) NH ₄ NO ₃
69. Sol.	$\begin{array}{c} 3\\ \text{CaCO}_3 \rightarrow \underset{\text{Basic}}{\text{CaO}} + \underset{\text{Acidic}}{\text{CO}_2} \end{array}$			
70.	respectively. The reacti	ion X + $Y^{2+} \rightarrow X^{2+} + Y$ wil	I be spontaneous when :	e are -0.76, -0.23 and -0.44 V
70.	4	(2) X = Ni, Y = Zn	(3) X = Fe, Y = Zn	(4) X = Zn, Y = Ni
Sol.	$Zn + Fe^{+2} \rightarrow Zn^{+2} + Fe$ Fe + Ni ⁺² \rightarrow Fe ²⁺ + Ni			
	$Zn + Ni^{2+} \rightarrow Zn^{+2} + Ni$ All these are spontaneous	DUS		
71.	According to Freundlich	n adsorption isotherm, wh	nich of the following is co	prrect ?
71.	-	n adsorption isotherm, wh (2) $\frac{x}{m} \propto p^1$		prrect ?
71.	(1) $\frac{x}{m} \propto P^0$		(3) $\frac{x}{m} \propto p^{1/n}$	rrect ?
	(1) $\frac{x}{m} \propto P^0$ (4) All the above are co	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges	(3) $\frac{x}{m} \propto p^{1/n}$	vrrect ?
71.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are co 4 $\frac{x}{m} \propto P^{0}$ is true at extre	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure	vrrect ?
71. Sol.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are co 4 $\frac{x}{m} \propto P^{0}$ is true at extre $\frac{x}{m} \propto p^{1}$; $\frac{x}{m} \propto p^{1/n}$ are t	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures true at low and moderate	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure pressures	
71.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are con- 4 $\frac{x}{m} \propto P^{0}$ is true at extremation $\frac{x}{m} \propto p^{1}$; $\frac{x}{m} \propto p^{1/n}$ are the true of K _C for the reaction of K _C for the reacti	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures true at low and moderate nt (K _C) for the reaction N tion, NO(g) $\rightarrow \frac{1}{2} N_2(g) + \frac{1}$	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure pressures $V_2(g) + O_2(g) \rightarrow 2NO(g)$ $\frac{1}{2}O_2(g)$ at the same ten	at temperature T is 4 x 10 ⁻⁴ . The perature is :
71. Sol.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are co 4 $\frac{x}{m} \propto P^{0}$ is true at extre $\frac{x}{m} \propto p^{1}$; $\frac{x}{m} \propto p^{1/n}$ are to The equilibrium consta	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures true at low and moderate nt (K _c) for the reaction N	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure pressures $J_2(g) + O_2(g) \rightarrow 2NO(g)$	at temperature T is 4 x 10 ⁻⁴ . The
71. Sol. 72.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are constant $\frac{x}{m} \propto P^{0}$ is true at extremined $\frac{x}{m} \propto p^{1}$; $\frac{x}{m} \propto p^{1/n}$ are the second stance of K _c for the reaction (1) 0.02	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures true at low and moderate nt (K _C) for the reaction N tion, NO(g) $\rightarrow \frac{1}{2} N_2(g) +$ (2) 2.5 x 10 ²	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure pressures $V_2(g) + O_2(g) \rightarrow 2NO(g)$ $\frac{1}{2}O_2(g)$ at the same ten	at temperature T is 4 x 10 ⁻⁴ . The perature is :
71. Sol. 72.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are con- 4 $\frac{x}{m} \propto P^{0}$ is true at extrem $\frac{x}{m} \propto p^{1}$; $\frac{x}{m} \propto p^{1/n}$ are to The equilibrium constance value of K _C for the reaction (1) 0.02 4	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures true at low and moderate nt (K _C) for the reaction N tion, NO(g) $\rightarrow \frac{1}{2} N_2(g) +$ (2) 2.5 x 10 ² K _C = 4×10 ⁻⁴	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure pressures $V_2(g) + O_2(g) \rightarrow 2NO(g)$ $\frac{1}{2}O_2(g)$ at the same ten	at temperature T is 4 x 10 ⁻⁴ . The perature is :
71. Sol. 72.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are con- 4 $\frac{x}{m} \propto P^{0}$ is true at extrem $\frac{x}{m} \propto p^{1}$; $\frac{x}{m} \propto p^{1/n}$ are to The equilibrium constance value of K _C for the reaction (1) 0.02 4 N ₂ + O ₂ \longrightarrow 2NO	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures true at low and moderate nt (K _C) for the reaction N tion, NO(g) $\rightarrow \frac{1}{2} N_2(g) +$ (2) 2.5 x 10 ² K _C = 4×10 ⁻⁴	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure pressures $V_2(g) + O_2(g) \rightarrow 2NO(g)$ $\frac{1}{2}O_2(g)$ at the same ten	at temperature T is 4 x 10 ⁻⁴ . The perature is :
71. Sol. 72.	(1) $\frac{x}{m} \propto P^{0}$ (4) All the above are conditional of the second at $\frac{x}{m} \propto P^{0}$ is true at extreme $\frac{x}{m} \propto P^{1}$; $\frac{x}{m} \propto p^{1/n}$ are the second at $\frac{x}{m} \propto p^{1}$; $\frac{x}{m} \propto p^{1/n}$ are the second at K_{C} for the reaction of	(2) $\frac{x}{m} \propto p^1$ prrect for different ranges mely high pressures true at low and moderate nt (K _C) for the reaction N tion, NO(g) $\rightarrow \frac{1}{2} N_2(g) +$ (2) 2.5 x 10 ² K _C = 4×10 ⁻⁴	(3) $\frac{x}{m} \propto p^{1/n}$ of pressure pressures $V_2(g) + O_2(g) \rightarrow 2NO(g)$ $\frac{1}{2} O_2(g)$ at the same ten (3) 4 x 10 ⁻⁴	at temperature T is 4 x 10 ⁻⁴ . The perature is :

Sol. At high pressure Z = 1 +
$$\frac{Pb}{RT}$$

74. Which one of the following statements is correct ?
(1) All amino acids except lysine are optically active
(2) All amino acids except glycine are optically active
(3) All amino acids except glycine are optically active
(4) All amino acids except glycine are optically active
(3) All amino acids except glycine are optically active
(3) All amino acids except glycine are optically active
(3) All amino acids except glycine are optically active
(4) All amino acids except glycine are optically active
(3) Acetyl salicylic acid
(2) Phenyl salicylica acid
(3) Acetyl salicylite
(4) Methyl salicylic acid
75. 1
 $\int_{COOH} -G_{C-C-H_3}$
Sol. Acetyl salicylica acid
76. Ortho-Nitrophenol is less soluble in water than p- and m- Nitrophenols because :
(1) o-Nitrophenol is more volatile in steam than those of m - and p-isomers
(2) o-Nitrophenol shows Intermolecular H-bonding
(4) Methyl solicylication
(3) o-Nitrophenol shows Intermolecular H-bonding
(4) Mething point of o-Nitrophenol is lower than those of m- and p-isomers.
76. 2
 $\int_{C} + \int_{C} + \int_{C}$

 K_f for water is 1.86K kg mol⁻¹. If your automobile radiator holds 1.0 kg of water, how many grams of 84. ethylene glycol ($C_2H_6O_2$) must you add to get the freezing point of the solution lowered to $-2.8^{\circ}C$? (1) 72g (2) 93g (3) 39g (4) 27g 84. 2 Sol. $\Delta T_{f} = K_{f}.m$ $2.8 = 1.86 \times \frac{\text{wt}}{62} \times \frac{1000}{1000}$ Wt = 93q85. What is DDT among the following : (1) Greenhouse gas (2) A fertilizer (3) Biodegradable pollutant (4) Non-biodegradable pollutant 85. 4 Sol. DDT - non-biodegradable pollutant. The increasing order of the ionic radii of the given isoelectronic species is : 86. (2) S^{2-} , CI^{-} , Ca^{2+} , K^{+} (3) Ca^{2+} , K^{+} , CI^{-} , S^{2-} (4) K⁺, S²⁻, Ca²⁺, Cl⁻ (1) Cl⁻, Ca²⁺, K⁺, S²⁻ 86. 3 For isoelectronic species, as the z/e decreases, ionic radius increases Sol. 87. 2-Hexyne gives trans-2-Hexene on treatment with : (1) Pt/H₂ (2) Li/NH₃ (3) Pd/BaSO₄ (4) LiAlH₄ 87. 2 Li/NH₃ $H_3C - CH_2 - CH_2 - C \equiv C - CH_3$ **Birch reduction** 2-Hexyne Trans-2-Hexene Sol. lodoform can be prepared from all except : 88. (2) Isopropyl alcohol (1) Ethyl methyl ketone (3) 3-Methyl - 2- butanone (4) Isobutyl alcohol 88. 4 Sol. lodoform is given by 1) methyl ketones R-CO-CH₃ 2) alcohols of the type R-CH(OH)CH₃ where R can be hydrogen also H₃C−−C−C₂H₅ ethyl methyl ketone CH₃ H₃C—ĊH-OH can give lodoform Test Isopropyl alchol ⊖ CH₃ H₃C—C—CH-CH₃ 3-methyl 2-butanone

KEY PART A: MATHEMATICS

1.	2	2.	3	3.	3	4.	2
5.	1	6.	4	7.	2	8.	4
9.	1	10.	4	11.	1	12.	1
13.	3	14.	4	15.	1	16.	3
17.	3	18.	4	19.	1	20.	3
21.	2	22.	1	23.	3	24.	2 or 4
25.	1	26.	2	27.	4	28.	2
29.	3	30.	2				

PART B: PHYSICS

31.	4	32.	4	33.	3	34.	3
35.	4	36.	4	37.	4	38.	4
39.	1	40.	4	41.	1	42.	3
43.	3	44.	1	45.	4	46.	3
47.	4	48.	1	49.	1	50.	1
51.	1	52.	3	53.	1	54.	3
55.	1	56.	4	57.	4	58.	3
59 .	3	60.	2				

PART C: CHEMISTRY

61.	2	62.	4	63.	4	64.	3
65.	2	66.	3	67.	4	68.	3
69.	3	70.	4	71.	4	72.	4
73.	3	74.	3	75.	1	76.	2
77.	2	78.	3	79.	2	80.	2
81.	4	82.	3	83.	2	84.	2
85.	4	86.	3	87.	2	88.	4
89.	3	90.	1				