The Catalyst of Your Ambition

BHU MCA ENTRANCE EXAM - 2014

1.	Let $f(x) = x $ and $g(x) = x^3 $, th (a) $f(x)$ and $g(x)$ are both contri- (b) $f(x)$ and $g(x)$ are both differ (c) $f(x)$ is differentiable but $g(x)$	tinuous erentiable (x) is not differentiable	12.	For fitting a polynomial of K^{th} – degree, there should be : (a) K normal equations in K unknowns (b) K Normal equations in (K + 1) unknowns (c) K + 1 Normal equations in (K + 1) unknowns (d) K + 1 Normal equations in K unknowns
2.	(d) f(x) is not continuous but g $\lim_{x \to 1} \frac{x + x^2 + \dots + x^a - n}{x - 1}$ is		13.	In an experiment, a coin is tossed twice. If the second toss results in a head, a die is rolled. The number of elements in the sample space is :
3.	(a) 0 (b) (c) $\frac{n(n-1)}{2}$ (d) The value of the derivative of	$\frac{n(n+1)}{2}$	14.	(a) 9 (b) 12 (c) 14 (d) 16 For two events A, B associated with a random
4.	(a) cannot be found (b) (c) 0 (d) If $x^m y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$) -2) 2		experiment, $B \subset A$, then $P(A \cap \overline{B})$ is equal to :(a) $P(A) - P(B)$ (b) $P(A) - 1 + P(B)$ (c) $P(A) + 1 - P(B)$ (d) $P(A) - 1 - P(B)$
	(a) $\frac{y}{x}$ (b) (c) $\frac{gy}{px}$ (d)	$\frac{py}{qx}$ $\frac{x}{y}$	15.	 Which of the following statements is correct ? (a) Every LPP admits an optimal solution. (b) Every LPP admits a unique optimal solution. (c) Every LPP admits an infinite number of optimal
5.	If $3^{x} + 3^{y} = 3^{x+y}$, then the val (a) -1 (b) 0 (c) a = b = 0			solutions. (d) If a LPP admits two optimal solutions, it has an infinite number of optimal solutions.
6.	$\begin{aligned} & \left f \begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & a & 0 \end{vmatrix} \right = 0, \text{ then} \\ (a) & a = b = -1 \qquad (b) \\ (c) & \frac{a}{b} \text{ is a cube root of unity (d)} \end{aligned}$		16.	Consider the following statements : A : The set of all feasible solutions of a LPP is called the feasible region. B : The set of all feasible solutions is a convex set.
7.	If α, β, γ are the roots of th (with $p \neq 0, q \neq 0$), then the value $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$ is :	The equation $x^3 + px + q = 0$		In your opinion : (a) Only A is correct (b) Only B is correct (c) Both A and B are correct (d) Both A and B are incorrect
	(a) 0 (b) (c) q (d)	$p^2 - 2q$	17.	If A and B are two sets, then $A \cap (A \cap B)$ equals : (a) ϕ (b) A (c) B (d) $A \cap B$
8.	In the expansion of $\left(x^3 - \frac{1}{x^2}\right)^1$ is:		18.	A set contains n elements. The power set contains :(a) n elements(b) n^2 elements(c) 2^n elements(d) n^n elements
9.	(a) $-{}^{15}C_9$ (b) 0 (c) If the coefficients of the mide $(1 + x)^{2n+2}$ is p and the coefficients expansion of $(1 + x)^{2n+1}$ are c	dle term in the expansion of ficient of middle terms in the	19.	In an examination, 60% candidates passed in Physics, 75% passed in Mathematics. If x% passed in both, then : (a) $15 \le x \le 60$ (b) $15 \le x \le 75$ (c) $35 \le x \le 75$ (d) $35 \le x \le 60$
10.) q = q + r) 2p = q + r cutive natural numbers is 'M'.	20.	If A = {1, 2, 3}, B = {2, 3, 4} and C = {2, 4}, then the number of elements in $(A - B) \times (B - C)$ is :
	then the Arithmetic Mean c natural numbers is : (a) can not be found (b)	of the next 10 consecutive	21.	(a) 1 (b) 2 (c) 3 (d) 4 The value of $\frac{1-tan^2 15^\circ}{1+tan^2 15^\circ}$ is :
11.	(c) M + 5 (d) If G_1 , G_2 are the geometri) M + 10 ic means of two series of	22.	(a) $\frac{\sqrt{3}}{2}$ (b) 1 (c) $\sqrt{3}$ (d) 2 The value of sin x + cos x is : (a) $\leq \frac{1}{2}$ (b) $\leq \sqrt{2}$ (c) ≤ 2 (d) $\geq \sqrt{2}$
	observations and B is the get the corresponding observation (a) $\frac{G_1}{G_2}$ (b)		23.	(a) $\leq \frac{1}{\sqrt{2}}$ (b) $\leq \sqrt{2}$ (c) ≤ 2 (d) $\geq \sqrt{2}$ In a triangle ABC, a = 5, b = 4, $\angle A = 60^{\circ}$, then c is the root of the equation :
		$\log \frac{G_1}{G_2}$		(a) $c^2 + 4c + 9 = 0$ (b) $c^2 + 4c - 9 = 0$ (c) $c^2 - 4c - 9 = 0$ (d) $c^2 - 4c + 9 = 0$

The Catalyst of Your Ambition

	-				
24.	corresponding sides are i		36.	inclined plane whose slo	ests in limiting equilibrium on an ope is 30°. The normal reactions
	(a) 1 : 2 : 3	(b) $1:\frac{1}{2}:\sqrt{3}$		and co-efficient of friction	
	(c) $2: \sqrt{3}: 1$			(a) $2\sqrt{3}$ kg, $\frac{1}{\sqrt{3}}$	(b) $2\sqrt{3}$ kg, $\frac{1}{\sqrt{2}}$
25.	In a triangle ABC, $\frac{b+c}{8} = \frac{c}{2}$	$\frac{a+b}{2} = \frac{a+b}{7}$, then the value of cos c		(c) $3\sqrt{2}$ kg, $\frac{1}{\sqrt{3}}$	(d) $3\sqrt{2}$ kg, $\frac{1}{\sqrt{2}}$
	is :	, ,	37.		of cone of friction is 30°. The co-
	(a) 0	(b) $\frac{3}{5}$		efficient of friction is :	a x 1
	(c) $\frac{4}{5}$	(d) 1		(a) $\frac{1}{\sqrt{3}}$	(b) $\frac{1}{\sqrt{2}}$
26.	5	of n for which $\left(\frac{1-i}{1+i}\right)^n$ is real is :		(c) $\frac{\sqrt{3}}{2}$	(d) $\frac{1}{3}$
	(a) 1	(b) 2	38.		irely with in a smooth spherical
	(c) 3	(d) 4		bowl. Its inclination to the (a) 0° (b) 30°	
27.		ity, then w, w^2 are the roots of :	39.		(c) 35° (d) 45° a straight line traversed one-third
	(a) $z^2 + z + 1 = 0$				ity of 5 m/s. the remaining part of
	(c) $z^2 - z - 1 = 0$				d with velocity 3 m/s for half the
28.	If $z + z^{-1} + 1 = 0$, then z^{20}	$^{00} + z^{-200}$ is equal to :			n/s for the other half of the time. the body over the whole time of
	(a) – i (b) i	(c) 1 (d) –1		motion will be :	are body ever the where the of
29.		f unit length perpendicular to the		(a) 2 m /s	(b) 2.5 m /s
	vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + \hat{j}$		40	(c) 3 m /s	(d) 5 m /s
	(a) 2 (c) 3	(b) 1 (d) infinite	40.		th an initial velocity $\bar{v} = (p\hat{i} + q\hat{j})$ projectile is double the maximum
30.	• •	is acting at a point which is		height reached by it, then	
	displaced from point A t	o B. If the position vectors of A		(a) p = 2q (b) q = 4p	
		and $3\hat{i} - \hat{j} + 2\hat{k}$ respectively, the	41.	The position of a particle is given by the relation :	e x (in metres) at a time t second
	work done by the force is (a) 2 units	(b) 3 units		is given by the relation .	$\vec{r} = 3 + \hat{\iota} - t^2\hat{\jmath} + 4\hat{k}$
	(c) 4 units	(d) 5 units	2.4	The magnitude of veloci	ty (in m/s) of the particle after 5
31.		is acting at a point A whose		seconds is :	
		is $\hat{i} + \hat{j} + \hat{k}$. The moment of the		(a) √ <u>102</u>	(b) √ <u>109</u>
	force about the origin is : (a) $\hat{i} + 2\hat{j} + \hat{k}$			(c) $\sqrt{110}$	(d) $\sqrt{113}$
	(c) $\hat{i} + \hat{j} - 2\hat{k}$	(d) $\hat{i} + \hat{i} + 2\hat{k}$	42.	If $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in AP,	
32.		$+\hat{j}-3\hat{k}, \vec{b}=-\hat{i}+3+4\hat{k}$ and			(b) a, b, c are in HP
		e sides of a triangle, then the		(c) a^2 , b^2 , c^2 are in AP	u b c
	value of λ is :	() .	43.	$ If \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}, T $	Then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ equals :
33.	(a) 2 (b) –4	(c) –6 (d) 6 2.5 radians per second about an		(a) $\frac{\pi^2}{2}$ (b) $\frac{\pi^2}{2}$	
55.		B are points $\hat{i} - 2\hat{j} + \hat{k}$ and	44.	If $s = 1 + a + a^2 + \dots, ($	12 10
		of the particle P of the body at		(a) $\frac{s}{s-1}$	(b) $\frac{s}{1-s}$
	the point $\hat{\iota} - \hat{j} - \hat{k}$ is				(d) $\frac{1-s}{s}$
		$(b) -2\hat{\imath} + 13\hat{\jmath} + 8\hat{k}$	45	(c) $\frac{s-1}{s}$	5
• •		(d) $5\hat{\imath} - 4\hat{\jmath} + 6\hat{k}$	45.	3 is	1 to 60 that are divisible by 2 or
34.	Find a such that the vert $3\hat{i} + a\hat{j} + 5\hat{k}$ are coplanar	ectors $2\hat{\imath} - \hat{\jmath} + \hat{k}$, $\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ and		(a) 330	(b) 1230
	(a) -4	(b) 4		(c) 1560	(d) 1830
	(c) –2	(d) 2	46.	The fifth, tenth and fifte respectively. Then :	enth terms of a GP are p, q, r
35.		100 gm are hanging at marks		(a) $p^2 = qr$	(b) $q^2 = pr$
	at the point marked as :	scale. The scale will be balanced		(c) $r^2 = pq$	(d) $pqr = 1$
	(a) 50	(b) 60	47.	The sum of n terms of $\frac{1}{2}$ +	· · · ·
	(c) 65	(d) 67	-1.		
				(a) n + 2 ⁿ – 1 (c) n – 2 ⁻² – 1	(b) $n + 2^{-n} - 1$ (d) $n - 2^{n} - 1$
				(c) n - 2 - 1	(u) n - 2 - 1

	The Catalyst of Your Ambition
∥	Your Ambition

			1		Tour Ambition
40	\mathbf{T} \mathbf{r} \mathbf{r}		61.	The ASCII is a :	
48.	The value of $\sum_{r=1}^{a} \frac{P_r^a}{r!}$ is :		01.	(a) 7 bit code	(b) 12 bit code
		(c) $2^{n}-1$ (d) $2^{n-1}+1$		(c) 4 bit code	(d) 6 bit code
49.	The sum of the digits in	the unit place of all the four digit	62.		uence of steps in the operation of
	numbers formed with 2,	3, 4, 5 taken all at a time, is :	•=-	a basic computer ?	
	(a) 14	(b) 42		(a) processor	(b) input device
	(c) 84	(d) 336		(c) output device	(d) memory
50.		bounded by the curve $y = e^x, e^{-x}$	63.	The contents of an 8-bit	. , .
	and the straight line x =				n signed -1's complement form,
	(a) $e + e^{-1}$	(b) $e + e^{-1} - 2$		the decimal equivalent of	the number is :
	(c) $e + e^{-1} - 1$	(d) $e - e^{-1} + 1$		(a) –127	(b) 127
51.		iangle formed by x = 3, y = 4 and		(c) 128	(d) –0
	4x + 3y = 12 is at the point (a) (2, 0)		64.	USB stands for :	
	(a) (3, 0)			(a) Universal Standard Bu	us
	(c) $(\frac{3}{2}, 2)$	(d) (3, 4)		(b) Universal Serial Bus	
52.		by the equation $Ax^2 + 2Bxy +$		(c) Unified Standard Bus	
	$Cy^2 = 0$ are perpendicul			(d) Uniform Serial Bus	
	(a) A + B = 0	(b) $A + C = 0$	65.	Level 1 cache is a form o	
	(c) B + C = 0	(d) $AC = -1$		(a) processor	(b) input device
53.		E of the triangle ABC with vertices		(c) output device	(d) memory
		0) are mutually perpendicular is :	66.	information is	quired to encode 30 pieces of
	(a) a = b	(b) $ab = -1$		(a) 4	(b) 5
	(c) a = $\pm \sqrt{2}$	(d) b = $\pm \sqrt{2}$ a		(c) 6	(d) 7
54.	The circle $x^2 + y^2 - 4x - x$ -axis of length :	-6y - 12 = 0 cuts an intercept on	67.		not a valid library function in the
	(a) 8	(b) 6	••••	C programming language	
	(a) 0 (c) 4	(d) 2		(a) peek ()	(b) poke ()
55.		and $x^2 + y^2 - 2x - 2y - 1 = 0$:		(c) atoc ()	(d) malloc ()
	(a) do not intersect	(b) touch internally	68.	What is the output of the	following C-program ?
	(c) touch externally	(d) intersect at two points		# include < stdio. h >	
56.	•	$y^2 - 6x - 2y + 13 = 0$ is :		void main ()	
		(b) (-2, 1)		{	
	(c) 2, -1)	(d) (2, 1)		Char letter '?';	
57.		t of a chord passing though the		Print f("/ n% c", letter) ;	
	vertex of the parabola y ²			}	(1) 00
	(a) 2a = 1	(b) a = 1		(a) z	(b) 90 .
	(c) a = 2		69.	(c) Error	(d) Garbage value
E 0			09.	Specify the output of the # include < stdio. h >	lollowing C- program.
58.		the ellipse $\frac{x^3}{a^3} + \frac{y^2}{b^2} = 1$ with AA' as		Void main ()	
	the triangle APA' is :	e maximum value of the area of		{	
	-	(b) cb		Int a = 10, b = 20 ;	
	(a) $\frac{1}{2} ab$	(b) ab		Char $x = 1, y = 0;$	
	(c) 2 <i>ab</i>	(d) None of these		lf (a, b, x, y)	
59.		e ellipse at real points if, and only		{	
	if :			Print f ("EXAM") ;	
	(a) $ t \le 1$			}	
	(b) $ t \le 2$ (c) $ t \ge 2$			}	
				(a) AM is printed	(b) EXA is printed
<u></u>	(d) $ t \ge 1$	x and x of the hyperbola x^2 x^2		(c) Compile error	(d) None of the above
60.		contact of the hyperbola $x^2 - y^2 =$ he corresponding pair of tangents	70.	Hexadecimal equivalent	
	is :	ne corresponding pair or langents		(a) 1217	(b) 028F
	(a) $25x^3 - 16y^2 - 90x - $	81 = 0		(c) 2297	(d) OB17
	(b) $25x^3 - 16y^2 - 90x + 10y^2 - 90x^2 - 90x^2 - 90x + 10y^2 - 90x + 10y^2 - 90x + 10y^2 - 90x + $				
	(c) $25x^3 - 16y^2 + 90x +$				
	(d) $25x^3 - 16y^2 + 90x - $				
			I		

					Tour Ambition			
71.	In a certain code languar	ge 'COMPUTRONE' is written as	Direc	ctions : (Q Nos 84-90) :	In each of the following			
71.		s 'ADVANTAGES' written in the	Directions : (Q. Nos. 84-90) : In each of the following questions, four pair of words are given, out of these words one					
	same code ?			pair does not bear the common relationship which rest bear. You				
	(a) IDUJLAIC	(b) AVDATNSEGA		equired to find that odd pair				
	(d) ADVATNSAGE	(d) AVDANTSEGA	84.	(a) Needle - Prick	(b) Gun – Fire			
72.	If CAT = 12 then MAN = 1	?		(c) Auger – Bore	(d) Chisel – Carve			
	(a) 14	(b) 24	85.	(a) Lion - Roar	(b) Snake – Hiss			
	(c) 16	(d) None of these		(c) Bees – Hum	(d) Frog – Bleat			
73.		Lotus' is called 'Rose', 'ROSE is	86.	(a) Dim - Bright	(b) Wrong – Right			
		unflower is called 'Marigold', then		(c) Shallow – Deep	(d) Genuine – Real			
	which will be the national		87.	(a) Oil - Lamp	(b) Water – Tap			
	(a) Lily	(b) Lotus		(c) Oxygen – Life	(d) Power – Machine			
	(c) Rose	(d) Marigold	88.	(a) Cat - Mouse	(b) Lion – Dear			
		76) : In each of the following		(c) Cow – Hen	(d) Hawk – Pigeon			
		n relationship between two g <mark>iven</mark> " and one wor <mark>d is</mark> given o <mark>n the</mark>	89.	(a) Captain - Team	.,			
		other word is to be selected from		(b) Boss – Gang				
		aving the same relationship with		(c) Chief Minister - Cabir	net			
	the word, as the words of	the given pair bear.		(d) Artist - Troupe				
	Chosse the correct altern		90.	(a) Hard - Soft	(b) Pointed – Blunt			
74.	Malaria : Disease :: Spea			(c) Sweet – Soar	(d) Long – High			
	(a) Wound	(b) Sword	91.		t 'X' and walks 3 km southwards,			
	(c) Weapon	(d) Death			lks 6 km. In which direction is he			
75.	Food : Stomach :: Fuel : '			from the starting point ?	(b) South Foot			
	(a) Engine	(b) Plane		(a) South - West (c) West	(b) South - East (d) South			
70	(c) Truck	(d) Automobile	92.	· · /	alking in opposite directions. Ram			
76.	Five : Ashes : : Explosion		52.		8 km. Then Ram turns right and			
	(a) Flame (c) Sound	(b) Death (d) Debris			turns Left and walks 6 km. How			
Direc		he following questions consist of	1000	far everyone is from the s	starting point ?			
Direc		rtain relationship between each		(a) 11 km	(b) 8 km			
		etter pairs of words. Select the		(c) 9 km	(d) 10 km			
		same relationship as the original	93.	If 18" February, 2009 is	a Friday, then what will be the			
	pair of words :			day of 18 th February, 201				
77.	Fodder : Cattle : : ?			(a) Sunday (c) Tuesday	(b) Monday (d) Wednesday			
	(a) Pen : Ink	(b) Ball : Stick	94.	Which number, in the giv				
70	(c) Fruit : Juice	(d) Grass : Horse	54.	160, 118, 83, 65, 34, 20				
78.	Horse : Hoof :: ? (a) Man : Foot	(h) Dog i Block		(a) 83 (b) 118	(c) 34 (d) 65			
	(c) Paise : Rupee	(b) Dog : Black (d) Pen : Pencil	95.	Find the missing number				
79.	Sailor : Compass : : ?				in the long hange			
75.	(a) Student : Exam	(b) Doctor : Stethoscope						
	(c) Pen : Officer	(d) Painter : Artist		7 3	X			
80.	Cells : Cytology : : ?							
	(a) Worms : ornithology	(b) Insects : Entomology						
	(c) Discases : Physiology				5			
81.	Sin : Crime : : ?	()			5			
	(a) Man : Animal	(b) Home : Court			/			
	(c) Morality : Legality	(d) Jury : Priest						
82.	Man : Mammal : : ?			13 8	\sim			
	(a) Liberty : Literate	(b) Hail : Snow						
	(c) Native : Inhabitant	(d) Offspring : Family						
83.	Spring : Elasticily : : ?			(a) 1	(b) 26			
	(a) Person : Whims	(b) Wool : Warmth		(c) 39	(d) 45			
	(c) Marketing : Advertising	g (d) Radio : Broadcast						

18, Zone-II, M.P. Nagar, Bhopal 🖀 : 0755-4295319

The Catalyst of Your Ambition

					Tour Ambidion	7		
96.	lf (i) 'A – B' means 'A is fa	ather of B'	105.	For any two events A ar	nd B, the probability that exact	lv		
	(ii) 'A + B' means 'A is da			one of the two events occurs, is given by :				
	(iii) 'A + B' means 'A is so			(a) $P(A) + P(B) - P(A \cap$				
	(iv) 'A × B' means 'A is wi			(b) $P(A) + P(B) - 2P(A)$				
	Which of the following me			(c) $1 - P(A \cap B)$				
	(a) P + Q – S	(b) $P + Q \times S$		(d) $1 - P(A \cup B)$				
	(c) P + Q + S	(d) $P \times Q + S$	106.		eatedly. If head appears in fir	st		
97.	Today is Monday. After 6				bability of head appearing in th			
	(a) Wednesday	(b) Saturday		fifth toss is :				
	(c) Tuesday	(d) Thursday		(a) $\frac{1}{32}$ (b) $\frac{1}{5}$	(c) $\frac{1}{2}$ (d) $\frac{31}{32}$			
98.	Consider the statement :	(), ,	107.		2 32			
	$A = B C \ge D = E \le F$	1 A Y A		Manimize $Z = 3x + 5y$				
	Conclusions I : F > B			Subject to $x \ge 3$; $y \ge 1$;	2x + y > 5			
	li : B ≥ D	and the second sec		Redundant cohstraint in t	-			
	In your opinion :			(a) $2x + y \ge 5$	(b) $y \ge 1$			
	(a) Only conclusion I follo	ws		(c) $x \ge 3$	(d) None of these			
	(b) Only conclusion II follo		108.		(-,			
	(c) Either conclusion I or I			Maximize Z = 2x + 3y				
	(d) Neither conclusion I no	or II follows		Subject to $X \le 3$; $y \le 3$; x	$x + y \le 5; x, y \ge 0$			
99.	Consider the statement :			What do you find ?				
	Imprisonment for 27 year	ars made <mark>Nelso</mark> n M <mark>andela t</mark> he		-	x = 2, y = 3; Maximum value of	Z		
	President.			= 12				
	Assumptions				x = 3, y = 2; Maximum value of	Z		
	I : Only who will be impr the President.	isoned for 27 years will become		= 12		-		
		President, imprisonment is a		(c) Optimal solution is at $2 = 13$	x = 3, y = 2; Maximum value of	Ζ		
	qualification.	Fresident, imprisorment is a			x = 2, y = 3; Maximum value of	7		
	In your opinion :		L	= 13		2		
	(a) Only Assumption I is in	mplicit	109.	If sets A and B are define	ed as :			
	(b) Only Assumption II is	-		A = {(x, y) y = e^x , x \in R}				
	(c) Either I or II is implicit			$B = \{(x, y) y = x, x \in R\}$				
	(d) Neither I nor II is impli	cit		Then :				
100.		hands of a clock at right angle in		(a) A ⊂ B				
	a day ?			(b) $B \subset A$				
	(a) 22	(b) 24		(c) $A \cap B = \phi$				
404	(c) 44	(d) 48		(d) $A \cup B = A$				
101.			110.		ombatants lost an eye, 82% a			
	(a) $\frac{AM-Median}{SD}$	(b) $\frac{AM-Model}{SD}$			3% a leg. If x% lost all the fo	ur		
	(c) $\frac{Median-Mode}{SD}$	(d) $\frac{AM-Mode}{Median}$		limbs, then the minimum				
102.	00	$\{x_1, x_2, \dots, x_n\}$ is S, then the		(a) can not be determined				
102.		$1 - 2x_1, 1 - 2x_2, \dots, 1 - 2x_n$ is		(b) 10				
	equal to			(c) 71				
	(a) 1 – 2 S	(b) –2 S	444	(d) None of these	- 2			
	(c) 2 S	(d) 1 – S	111.	· · · · · · · · · · · · · · · · · · ·				
103.	If X and Y are two variable	es such that SD $(X + Y) \ge$ SD		(a) $n\pi + \frac{\pi}{6}$	(b) $n\pi \pm \frac{\pi}{6}$			
	(X – Y) then :			(c) $2n\pi \pm \frac{\pi}{6}$	(d) $2n\pi \pm \frac{\pi}{6}$			
		(b) $0 \le r(X, Y) \le 1$	112.	If $\sin x + \sin 3x + \sin 5x =$	= 0, then the value of x such th	at		
	(c) r (X, Y) = 0	(d) $r(X, Y) = \pm 1$		$0 < x \le \frac{\pi}{2}$ is :				
104.		n of Y on X and X on Y are		(a) $\frac{\pi}{12}^{2}$	(b) $\frac{\pi}{6}$			
		$c_1 = 0$ and $a_2x + b_2y + c_2 = 0$,						
	then :	ALC: UNK		(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$			
	(a) $a_1 a_2 \le b_1 b_2$	(b) $a_1 b_2 \le a_2 b_1$						
	(c) $a_1 b_2 \ge a_2 b_1$	(d) $a_1 a_2 \le b_1 b_2$						

in	npetus	ļ	The Catalyst of Your Ambition
	The equation $a \cos x + b \sin x = c$ where $ c > \sqrt{a^2 + b^2}$ has : (a) no solution (b) a unique solution (c) two solutions (d) an infinite number of solutions	125. 126.	Four men and four women are to sit around a circular table such that there is a man on either side of every woman. The number of seating arrangements is : (a) $3! \times 4!$ (b) $(3!)^2$ (c) $(4!)^2$ (d) $2 (3!)^2$ If the sum of the co-efficients in the expansion of $(a + b)^n$ is 1024, then the largest coefficient in the expansion is :
	The domain of $\sin^{-1} x$ is : (a) (-1, 1) (b) ($-\pi, \pi$) (c) (0, 2π) (d) ($-\infty, \infty$)	127.	(a) 84(b) 126(c) 168(d) 252Consider the following statements :
	$tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{2}{9}\right) x ?$ (a) $tan^{-1}\left(\frac{1}{18}\right)$ (b) $tan^{-1}\left(\frac{17}{36}\right)$ (c) $tan^{-1}\left(\frac{1}{2}\right)$ (d) $\left(\frac{1}{2}\right)tan^{-1}\left(\frac{3}{5}\right)$	1	 A : Matrix multiplication is associative. B : Matrix multiplication is not commutative, in general. C : Produclof two matrices may be a null matrix, while neither of them is a null matrix. In your opinion :
	If the sides of a triangle are 7 cm, $4\sqrt{3}$ cm and $\sqrt{13}$ cms respectively, then the smallest angle is : (a)15° (b) 30° (c) 45° (d) 60°	4	 (a) A is incorrect (b) B is incorrect (c) C is incorrect (d) All the three statements are correct
117.	If b = 3, c = 4, $\angle B = \frac{\pi}{3}$, then the number of triangles that may be constructed is : (a) 0 (b) 1 (c) 2 (d) Infinite	128.	From the matrix equation AB = AC we can conclude B = C provided A is : (a) Singular (b) Non-singular (c) Symmetric (d) Square
	The angle of elevation of the top of an incomplete vertical pillar at a horizontal distance of 50 mt. from its base is 45°. If the angle of elevation of the complete pillar at the same point is to be 60°, then the height of the incomplete pillar is to be increased by : (a) 25 mt (b) $50(\sqrt{3}-1)mt$ (c) 50 mt (d) $50(\sqrt{3}+1)mt$	129.	Consider the following statements : $A = \frac{\lim_{x \to 0} (1 + \lambda x)^{1/x}}{x \to 0} = e^{\lambda}; B = \frac{\lim_{z \to \infty} (1 + \frac{\lambda}{x})}{x \to \infty} = e^{-x}$ In your opinion : (a) Only A is correct (b) Only B is correct (c) Both A and B are incorrect (d) Both A and B are incorrect If $x^{y} = a^{b}$, a, b being constants, then $\frac{dy}{dx} = ?$
	If every pair from the equations $x^2 + px + qr = 0$; $x^2 + qx + pr = 0$ and $x^2 + rx + pq = 0$ has a common root, then the product of the three common roots is : (a) \sqrt{pqr} (b) pqr (c) $p^2q^2r^2$ (d) 2pqr		(a) $\frac{y}{x \log x}$ (b) $\frac{y \log x}{x}$ (c) $-\frac{y}{x \log x}$ (d) $\frac{y}{y \log x}$ If $tan^{-1}4x + tan^{-1}6x = \frac{\pi}{4}$, then x equal to : (a) $\frac{1}{12}$ (b) $-\frac{1}{2}$
120.	The value of $\sqrt{8 + 2\sqrt{8 + 2\sqrt{8 + 2\sqrt{\dots \dots \dots}}}}$		(c) $-\frac{1}{12}$ (d) None of these
121.	(a) 4 (b) 6 (c) 8 (d) 10 The number of real roots of the equation : $ x ^2 - 5 x + 4 = 0$ is : (a) 1 (b) 2 (c) 3 (d) 4	132.	If μ is the coefficient of friction between two bodies in contact, then : (a) $0 \le \mu \le 1$ (b) $-1 \le \mu \le 1$ (c) $-\frac{1}{2} \le \mu \le \frac{1}{2}$ (d) $\mu > 1$
122.	If the ratio of the roots of $x^2 + bx + c = 0$ and $x^2 + qx + r = 0$ be the same, then : (a) $b^2q = cr^2$ (b) $b^2r = q^2c$ (c) bq = cr (d) br = cq	133.	For $2 \le r \le n$, ${}^{n}C_{r} + 2 {}^{n}C_{r-1} + {}^{n}C_{r-2} = ?$ (a) ${}^{n+1}C_{r-1}$ (b) $2 {}^{n+1}C_{r+1}$ (c) $2 {}^{n+2}C_{r}$ (d) ${}^{n+2}C_{r}$
123.	The number of roots of the equation : $9 \sec^2 \theta - 9 \sec \theta + 2 = 0$, is (a) 0 (b) 1 (c) 2 (d) 4	134.	If $f(x) = \frac{x-1}{x+1}$, then f(2x) is : (a) $\frac{f(x)+1}{f(x)+3}$ (b) $\frac{3f(x)+1}{f(x)+3}$ (c) $\frac{f(x)+3}{f(x)+1}$ (d) $\frac{f(x+1)}{f(x)+3}$
124.	There are 4 letters and 4 directed envelops. The numberof ways all the letters are placed in a wrong envelope is :(a) 6(b) 8(c) 9(d) 12	135.	The line x + y = 6 is normal to the parabola y^2 = 8x at the point : (a) (4, 2) (b) (2, 4) (c) (2, 2) (d) (3, 3)

The Catalyst of Your Ambition

				4
136.	The largest revenue source in India is :	149.	,	nis
	(a) Railways (b) Sales Tax		grandfather. "	
	(c) Excise Duty (d) Direct Tax		Fill in the gap by the appropriate alternative :	
137.	U		(a) to (b) about	
	of India ?	450	(c) after (d) on	
	(a) Election Commission	150.	01 5	
	(b) Finance Commission		"I told you about the incident yesterday,	
	(c) Public Service Commission		(a) didn't (b) don't	
400	(d) Planning Commission		(c) do (d) did	
138.	Which of the following cities is known as the commercial capital of India ?			
	(a) New Delhi (b) Kolkata			
	(c) Chennai (d) Mumbai			
139	Who founded the Bharatiya Janasangh ?			
100.	(a) Dr. Shyama Prasad Mukherjee			
	(b) Deen Dayal Upadhyaya			
	(c) Veer Savarkar			
	(d) Atal Behari Vajpayee			
140	Tides in sea are caused by :			
	(a) Effect of Sun			
	(b) Effect of Moon			
	(c) Combined effect of Sun and Moon			
	(d) Graviational, centripetal and centrifugal forces.			
141.	Polio myelitus is a type of :			
	(a) bacterial (b) viral disease			
	(c) fungal disease (d) none of these			
142.	Who is the present Governor of Reserve Bank of India ?			
	(a) D. Subbarao (b) C. Rangarajan	h		
	(c) Raghuram Rajan (d) Osborne Smith	200		
143.	What is the name of the first antibiotic discovered ?			
	(a) Pennicilin (b) Streptomycin			
	(c) Actinomycin (d) Tetracycline			
144.	The next Common Wealth Games will be held in :			
	(a) Edinburgh (b) Kuala Lurnpur			
	(c) Glaagow (d) Gold Coast			
145.	The President of India can be removed from his office by			
	the :			
	(a) Prime Minister			
	(b) Lok Sabha			
	(c) Chief Justice of India			
	(d) Parliament			
146.	Fill in the blanks by selecting one from the given			
	alternatives : "Pam you can call me Mondya 3			
	"Ram, you can call me Mondya 3 O'clock the after noon."			
	(a) in, on, at (b) at, on, in			
	(c) on, at, in (d) in, at, on			
147.				
	(a) Active (b) Dependent			
	(c) Extremely important (d) Reserve			
148.	"Birds of same flock together."			
	Fill in the blank from the given alternatives :			
	(a) feather (b) colour			
	(c) group (d) foreign			

						A	NSWER				
	1 . (a)	2.	(d)	3 . (0	c) 4. (a)	5. (a)	6. (d)	7. (a)	8. (a)	9. (a	a) 10. (d)
	11. (a)	12.		13. (c	, , , ,	• • •	16. (a)	17. (d)	18. (c)	19. (, , ,
	21. (a)	22.		23 . (d			26. (b)	27. (a)	28. (d)	29. (a	
	31. (b)	32.	(c) 3 :	3. (wron	g) 34. (a)	35. (d)	36. (c)	37. (a)	38. (b)	39. (0	d) 40. (d)
41.	(wrong)	42.	(a)	43 . (a	a) 44. (c)	45. (b)	46. (b)	47. (b)	48. (c)	49. (c) 50. (b)
	51. (d)	52.	(b)	53. (d	c) 54. (a)	55. (d)	56. (b)	57. (a)	58. (b)	59 . (a	a) 60. (wrong)
	61. (a)	62.	(b)	63. (a	a) 64. (b)	65. (d)	66. (b)	67. (b)	68. (a)	69. (d	d) 70. (b)
	71. (b)	72.	(a)	73. (d	c) 74. (c)	75. (a)	76. (d)	77. (d)	78. (a)	79. (I	o) 80. (b)
	81. (c)	82.	(d)	83. (t	o) 84. (b)	85. (d)	86. (d)	87. (b)	88. (c)	89. (d	d) 90. (d)
	91. (b)	92.	(d)	93. (a	a) 94. (d)	95. (c)	96. (c)	97. (b)	98. (d)	99. (d	d) 100. (c)
	101. (b)	102.	• •	103. (t		105 . (b)	<mark>10</mark> 6. (c)	107. (d)	108. (d)	109. (, , ,
	111. (b)	112.		113. (a		115. (c)	116. (b)	117. (a)	118. (b)		o) 120. (a)
	121 . (d)	122.	(b)	123. (a	a) 124 . (c)	125 . (a)	126. (d)	127. (d)	128. (b)	129 . (a	a) 130. (c)
	131. (a)	132.	(a)	133. (c		()	136. (c)	137. (d)	138. (d)	139 . (a	a) 140. (3, 4)
	141. (b)	142.	(c)	143. (a	a) 144. (c)	145. (d)	146 . (c)	147. (c)	148. (a)	149. (c) 150. (a)