NIMCET-2021

1. $\int 3^{3^{3^{x}}} 3^{3^{x}} 3^{x} dx$ is equal to (a) $\frac{3^{3^{x}}3^{x}}{(\log 3)^{3}} + c$ (b) $\frac{3^{x}}{(\log 3)^{3}} + c$ (c) $\frac{3^{3^{x}}}{(\log 3)^{3}} + c$ (d) $\frac{3^{3^{x}}}{(\log 3)^{3}} + c$

2. If
$$y = \tan^{-1}\left(\frac{3x-x^3}{1-3x^3}\right)$$
, $-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$, then $\frac{dy}{dx}$
(a) $-\frac{1}{1+x^2}$ (b) $\frac{3}{1+x^2}$
(c) $\frac{3}{\sqrt{1+x^2}}$ (d) $\frac{1}{\sqrt{1+x^2}}$

- A polygon has 44 diagonals. Then number of sides are 3. (a) 9 (b) 10 (c) 11 (d) 12
- 4. If $A = \{1, 2, 3, 4, \}$ and $B = \{3, 4, 5\}$, then the number of elements in $(A \cup B) X (A \cap B) X (A\Delta B)$ is (b) 20 (a) 18 (c) 24 (d) 30
- 5. The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$ is equal to (a) 5 (b) 3 (d) 6 (c) 4
- If a variable takes values 0, 1, 2,, 50 with frequencies 6. 1, ${}^{50}C_1$, ${}^{50}C_2$,, ${}^{50}C_{50}$, then the A.M. is (a) 50 (b) 25 $(c) \frac{2^{50}}{50}$ (d) 51
- In a triangle, if the sum of two sides is x and their 7. product is y such that (x + z)(x - z) = y, where z is the third side of the triangle, then the triangle is (a) Equilateral (b) Right angled (c) Isosceles (d) Obtuse angled
- 8. If the vectors $a\vec{i} + \vec{j} + \vec{k}, \vec{i} + b\vec{j} + \vec{k}, \vec{i} + \vec{j} + c\vec{k}, (a, b, c \neq 1)$ are coplanar, then $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$ (a) 0 (c) 2 (d) 3
- If in a triangle ABC $a \cos^2 \frac{c}{2} + c \cos^2 \frac{A}{2} = \frac{3b}{2}$, then the 9. sides of the triangle are in (a) A.P. (b) G.P. (c) H.P. (d) None of the above
- 10. If the position vector of *A* and *B* relative to 0 be $\vec{\iota} - 4\vec{j} + 3\vec{k}$ and $-\vec{\iota} + 2\vec{j} - \vec{k}$, respectively, then the median through O of \triangle ABC is: (a) $-2\vec{j} + 2\vec{k}$ (b) $-\vec{j} + \vec{k}$ (c) $-\vec{i} - \vec{i} + \vec{k}$ (d) $-\vec{i} - \vec{i}$ (c) $-\vec{i} - \vec{j} + \vec{k}$ (d) $-\vec{j} - \vec{j} - \vec{k}$
- 11. If |k| = 5 and $0^{\circ} \le 360^{\circ}$, then the number of different solutions of $3\cos\theta + 4\sin\theta = k$ is (a) 0 (b) 1 (c) 2 (d) Infinite
- 12. If *P*(1,2), *Q*(4,6), *R*(5,7) and *S*(*a*, *b*) are the vertices of a parallelogram PQRS, then (b) a = 3, b = 4(a) a = 2, b = 3(c) a = 2, b = 4(d) a = 3, b = 5

- 13. If the system of equations 3x y + 4z = 3, x + 2y 3 $3z = -2,6x + 5y + \lambda z = -3$ has atleast one solution, then $\lambda =$ (a) -5 (b) 3
 - (c) 5 (d) 6
- 14. Let $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$, $\vec{b} = \hat{\imath} \hat{\jmath} + 2\hat{k}$ and $\vec{c} = \hat{\imath} + \hat{\jmath} 2\hat{k}$ are three vectors. Then, a vector in the plane of \vec{a} and \vec{c} whose projection on \vec{b} is of magnitude $\frac{1}{\sqrt{6}}$ is (a) $3\hat{i} - 2\hat{j}$ (b) $3\hat{i} + 2\hat{j}$ (c) $2\hat{i} + 3\hat{j} - \hat{k}$ (d) $3\hat{i} + 2\hat{j} + \hat{k}$
- **15.** The lines px + qy = 1 and qx + py = 1 are respectively the sides AB, AC of the triangle ABC and the base BC is bisected at (p, q). Equation of the median of the triangle through the vertex A is (a) $(2pq - 1)(qx + py - 1) - (p^2 + q^2 - 1)(px + qy - 1)$ 1) = 0 $(2pq-1)(px+qy-1) + (p^2+q^2-1)(qx+py-1) = 0$ (c) $(2pq - 1)(px + qy - 1) - (p^2 + q^2 - 1)(qx + py - 1)$ 1) = 0(d) $(2pq - 1)(qx + py - 1) + (p^2 + q^2 - 1)(px + qy -$ 1) = 0
- 16. If $y = \sin^{-1}\left(\frac{x^2+1}{\sqrt{1+3x^2+x^4}}\right)(x > 0)$, then $\frac{dy}{dx} =$ (a) $\frac{x^2-1}{x^4+3x^2+1}$ (b) $\frac{x^2+1}{x^4+3x^2+1}$ (c) $\frac{x^2-1}{x^4-3x^2+1}$ (d) $\frac{x^2+1}{x^4-3x^2+1}$
- 17. The four geometric means between 2 and 64 are (a) $\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$ (b) 4, 8, 16, 32 (c) $4\sqrt{2}, 8, 16\sqrt{2}, 32$ (d) None of the above
- 18. The general value of θ , satisfying the equation, $\sin\theta = -\frac{1}{2}$, $\tan\theta = \frac{1}{\sqrt{3}}$ is: (a) $n\pi + \frac{\pi}{6}, n \in I$ (b) $n\pi + (-1)^n \left(\frac{7\pi}{6}\right), n \in I$ (c) $2n\pi \pm \frac{7\pi}{6}, n \in I$ (d) $2n\pi + \frac{11\pi}{6}, n \in I$
- 19. There are 50 questions in a paper. Find the number of ways in which a student can attempt one or more questions: $\begin{array}{c} (a) \ 2^{50} - 1 \\ (c) \ 2^{50} - 2 \end{array} \qquad (b) \ 2^{50} + 1 \\ (d) \ 2^{50} + 2 \end{array}$
- 20. The probability of occurrence of two events E and F are 0.25 and 0.50, respectively. The probability of their simultaneous occurrence is 0.14. The probability that neither E nor F occurs is (a) 0.61 (b) 0.11 (c) 0.39 (d) 0.89
- 21. If θ is the acute angle between the pair of lines $x^2 - 7xy + 12y^2 = 0$, then $2\cos\theta + 3\sin\theta$

2000 + 3000	
$4\sin\theta + 5\cos\theta$	
$(a)\frac{29}{60}$	(b) $\frac{61}{20}$
(c) $\frac{39}{69}$	39
(c) $\frac{1}{61}$	$(d) \frac{69}{29}$

The Catalyst of Your Ambition

		NIMCE	T-2021
22. If F($\sin \theta = 0$ $\cos \theta = 0$, then $F(\theta)F(\alpha)$ is equal to	32. If $\log(1 - x + x^2) = a_1x + a_2x^2 + a_3x^3 + \cdots$. Then $a_3 + a_6 + a_9 + \cdots$ is equal to
	Lo	0 1	(a) $\log 2$ (b) $\frac{2}{3} \log 2$
	$F(\theta \alpha)$ $F(\theta + \alpha)$	(b) $F\left(\frac{\theta}{\alpha}\right)$ (d) $F(\theta - \alpha)$	(a) $\log 2$ (b) $\frac{2}{3} \log 2$ (c) $\frac{1}{3} \log 2$ (d) $2 \log 2$
		d \vec{b} is 120°. If $ \vec{b} = 2 \vec{a} $ and the	33. If n is an integer between 0 to 21, then find a value of n for which the value of $n! (21 - n)!$ is minimum.
		\vec{b} are at right angles, then $x =$	(a) 9 (b) 10 (c) 12 (d) 21
(a) $\frac{3}{2}$	1 3 2 3	(d) $\frac{2}{5}$	34. For what value of <i>p</i> , the polynomial $x^4 - 3x^3 + 2px^2 - 6$ is exactly divisible by $(x - 1)$
24. The	standard deviat	ion of20 numbers is 30. If each o <mark>f the</mark>	(a) 2 (b) 4 (c) 6 (d) 8
num	nbers is increase	d by 4, then the new standard	35. If $32 \tan^8 \theta = 2 \cos^2 \alpha - 3 \cos \alpha$ and $3 \cos 2\theta = 1$, then
devi (a) 2	iation will be 24	(b) 34	35. If $32 \tan^{6} \theta = 2 \cos^{6} \alpha - 3 \cos \alpha$ and $3 \cos 2\theta = 1$, then the general value of α for $n \in Z$ is
(c) 3		(d) 20	(a) $n\pi \pm \frac{\pi}{3}$ (b) $2n\pi \pm \frac{2\pi}{3}$
25 Tho	number of com	mon tangent to the cir <mark>cles</mark>	(c) $2n\pi \pm \frac{\pi}{3}$ (d) $n\pi \pm \frac{2\pi}{3}$
		$+ y^2 - 6x - 8y = 24 \text{ is}$	
(a) ((b) 1	36. The area of the triangle formed by the vertices whose position vectors are $3\hat{i} + \hat{j}, 5\hat{i} + 2\hat{j} + \hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}$ is
(c) 3	3	(d) 4	(a) $\sqrt{21}$ sq.units (b) $\sqrt{23}$ sq.units
26. lim,	$x \to \infty \left(\frac{x+7}{x+2}\right)^{x+5}$ equ	all to	(c) $\sqrt{33}$ sq.units (d) $\sqrt{29}$ sq.units
(a) a	e^{5} e^{2}	(b) <i>e</i> ⁻⁵	37. If $\vec{e}_1 = (1,1,1)$ and $\vec{e}_2 = (1,1,-1)$ and \vec{a} and \vec{b} are two
(c) e	e ²	(d) e^{-2}	vectors such that $\vec{e}_1 = 2\vec{a} + \vec{b}$ and $\vec{e}_2 = \vec{a} + 2\vec{b}$, then the
27. The	probability that	a man who is x years old will die in a	angle between \vec{a} and \vec{b} is
year	r is p. Then, amo	ngst n persons A_1, A_2, \dots, A_n each x	(a) $\cos^{-1}\left(-\frac{7}{11}\right)$ (b) $\cos^{-1}\left(\frac{7}{11}\right)$
year year		robability that A_1 , will die in one	(c) $\cos^{-1}\left(\frac{7}{9}\right)$ (d) $\cos^{-1}\left(\frac{6\sqrt{2}}{11}\right)$
(a) -		(b) $1 - (1 - p)^n$	
	10	(d) $\frac{1}{n} [1 - (1 - p)^n]$	38. In a \triangle ABC, if $\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} = k$, then k is always
			(a) >1 (b) ≥ 1 (c) = 2 (d) = 1
		ng frequency distribution table. 0-30 30-40 40-50 50-60 60-70 70-80	(0) - 2 $(0) - 1$
Fre	equency 180	f_1 34 180 135 f_2 50	39. If X and Y are two sets, then $X \cap Y' \cap (X \cup Y)'$ is (a) X' (b) Y'
	e total frequency value of <i>f</i> 1 and <i>f</i>	y is 686 and the median is 42.6, then	(a) A $(b) I(c) \phi (d) None of the above$
(a) 8	81, 25	(b) 82, 24	40 In these there is a first the much shifter of the sector
(c) 8	83, 23	(d) 84, 22	40. In three throws of three dice, the probability of throwing triplets not more than twice is
29. The	function $f(x) =$	$\frac{x}{1+x\tan x}, 0 \le x \le \frac{\pi}{2}$ is maximum	(a) $1 - \frac{1}{6^2}$ (b) $1 - \frac{1}{6^3}$ (c) $1 - \frac{1}{36^2}$ (d) $1 - \frac{1}{36^3}$
whe	en		(c) $1 - \frac{1}{36^2}$ (d) $1 - \frac{1}{36^3}$
(a) 2	$x = \sec x$	(b) $x = \tan x$ (d) None of the above	
(0)	$x = \cos x$	(d) None of the above	41. The eccentric angles of the extremities of latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are given by
		= 2 and $a\sin\theta - b\cos\theta = 3$, then	(a) $\tan = 1 \left(\pm \frac{ae}{b^2} + \frac{ae}{b^2} \right)$ (b) $\tan = 1 \left(\pm \frac{be}{b^2} \right)$
a² + (a) ($b^2 = 6$	(b) 5	(a) $\tan^{-1}\left(\pm \frac{ae}{b}\right)^{b}$ (b) $\tan^{-1}\left(\pm \frac{be}{a}\right)$ (c) $\tan^{-1}\left(\pm \frac{b}{ae}\right)$ (d) $\tan^{-1}\left(\pm \frac{a}{be}\right)$
(c) 1		(d) 10	(c) $\tan^{-}(\pm \frac{1}{ae})$ (d) $\tan^{-}(\pm \frac{1}{be})$
31 If_	$\frac{n!}{2}$ and $\frac{n!}{2}$	are in the ratio 2 · 1 then the value	42. If $f: R \to R$ is defined by
of n		are in the ratio 2 : 1, then the value	
(a) (0	(b) 2	$f(x) = \begin{cases} \frac{x+2}{x^2+3x+2} & if x \in R - \{-1, -2\} \\ -1 & if x = -2 \\ 0 & if x = -1 \end{cases}$
(c) 4	4	(d) 5	$\begin{array}{ccc} 0 & if & x = -1 \\ then f(x) \text{ is continuous on the set} \end{array}$
			(a) R (b) $R - \{-2\}$ (c) $R - \{-1\}$ (d) $R - \{-1, -2\}$
			(c) $R - \{-1\}$ (d) $R - \{-1, -2\}$

(c) $R - \{-1\}$

(b) $R - \{-2\}$ (d) $R - \{-1, -2\}$

43.	Let $\vec{a} = \hat{\imath} + \hat{\jmath}$ and \vec{b}	$=2\hat{\imath}-\hat{k}$. Then, the point of	Read the inform	ation give	en below a	and answ	er the fol	lowing						
	intersection of the	lines $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$	question:											
	is		I. In a family of s	-	is A, B, C, I	D, E and F	, there ar	e two						
	(a) $-\hat{\imath} + \hat{\jmath} + \hat{k}$ (c) $\hat{\imath} - \hat{\jmath} - \hat{k}$	(b) $3\hat{\imath} - j + \hat{k}$	married couples		1 .1	(D								
	(c) $\hat{i} - \hat{j} - \hat{k}$	(d) $3\hat{\imath} + \hat{\jmath} - \hat{k}$	II. D is grandmot			er of B.								
			III. C is wife of B											
44.	$\int e^x (\sinh x + \cosh x)$	x)dx = ?	IV. F is the granddaughter of E.54. Who among the following is one of the couples?											
		(b) $e^x \cosh x + C$												
	(c) $\sinh 2x + C$		(a) CD		(b) DE	6.1								
	(•) ••••••••	(1)	(c) EB		(d) None	of these								
45.	If $\alpha \neq \beta$ and $\alpha^2 = \frac{1}{2}$	$5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation		4.2										
	whose roots are $\frac{\alpha}{\beta}$ a		55. What is C to		(h.) C									
	$() 2^{2} 2^{2} = 2^{2}$		(a) Daughte		(b) Grand		um in a d							
	(a) $3x^2 - 25x + 3$		(c) Mother		(d) Canno	or be dete	mineu							
	(b) $3x^2 + 5x + 3 =$	= 0	E. Which of the	followin	ng ia tauno?									
	(c) $3x^2 - 5x + 3 =$		56. Which of the (a) A is brot		ig is tille:									
	(d) $3x^2 - 19x + 3$	= 0												
10	The leave of the ne	int of interrocation of ten contate the	(b) A is siste		one									
40.		int of intersection of tangents to the	(c) D has tw (d) None of		0115.									
	ellipse $\frac{x}{a^2} + \frac{y}{b^2} = 1$	which meet at right an <mark>gle i</mark> s	(u) Nolle of	ulese										
	(a) a circle	(b) a parabola	57. How many r	nalo mon	abors are	there in t	ho family	2						
	(c) an ellipse	(d) a hyperbola	(a) Three	male men	inders are	there in t	ne family	•						
			(a) Three (b) Two											
47.	If H_1, H_2, \ldots, H_n are	e n harmonic means between a and + $\frac{H_n+b}{H_n-b} =$	(c) Cannot b	o dotorm	inod									
	$h(\neq a)$, then $\frac{H_1+a}{H_1+a}$	$+\frac{H_n+b}{2} =$	(d) None of		inicu									
	H_1-a	$H_n - b$	(u) None of	ulese										
	(a) $2n$ (c) $n-1$	(b) $n + 1$	Study the follow	ing table	carefully	and answ	ver the fol	lowing						
	(c) $n - 1$	(d) $2n + 1$	question.	ing tuble	curcially	und unow	er the for	io wing						
							10 1	Oand						
40	The error of the reg	ion hounded brothe V guig and the	Subjects	40 and	30 and	20 and	10 and	vanu						
48.	The area of the reg	ion bounded by the $X - axis$ and the	Subjects (Full marks 50)	40 and above	30 and above	20 and above	10 and above	0 and above						
48.	curves defined by y	$y = \tan x$, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and												
48.	curves defined by y	$y = \tan x$, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and	(Full marks 50)	above	above	above	above	above						
48.	curves defined by $y = \cot x$, $\frac{\pi}{6} \le x \le x$	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $\frac{3\pi}{2}$ is	(Full marks 50) Physics	above 9 4	above 32 21	above 80 66	above 92 81	above 100 100						
48.	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$	(Full marks 50) Physics Chemistry Aggregate average	above 9 4 7	above 32 21 27	above 80 66 73	above 92 81 87	above 100 100 100						
48.	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $\frac{3\pi}{2}$ is	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know	above 9 4 7 n that at 1	above 32 21 27 least 3 stu	above 80 66 73 idents we	above 92 81 87 ere eligible	above 100 100 100 e for a						
	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium	above 9 4 7 n that at l on Chem	above 32 21 27 least 3 stu istry, the	above 80 66 73 idents we minimum	above 92 81 87 ere eligible 1 qualifyir	above 100 100 100 e for a ng						
	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above $y_1, \dots, A_{30} \text{ are } 30 \text{ sets each having 5}$	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch	above 9 4 7 n that at 1 on Chem emistry f	above 32 21 27 least 3 stu istry, the	above 80 66 73 idents we minimum	above 92 81 87 ere eligible 1 qualifyir	above 100 100 100 e for a ng						
	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $\frac{3\pi}{2}$ is (b) $\frac{1}{2}\log 2$ (d) None of the above y_2, \dots, A_{30} are 30 sets each having 5 y_2, \dots, B_n are <i>n</i> sets such that	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar	above 9 4 7 n that at l on Chem emistry f nge:	above 32 21 27 least 3 stu istry, the for eligibil	above 80 66 73 Idents we minimum ity to Syn	above 92 81 87 ere eligible 1 qualifyir	above 100 100 100 e for a ng						
	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $\frac{3\pi}{2}$ is (b) $\frac{1}{2}\log 2$ (d) None of the above y_1, \dots, A_{30} are 30 sets each having 5 y_2, \dots, B_n are <i>n</i> sets such that z_3, \dots, B_n are <i>n</i> sets such that $z_4 = s$. If each element of S belongs to	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40	above 9 4 7 n that at l on Chem emistry f nge:	above 32 21 27 least 3 stu istry, the for eligibil (b) 20 - 3	above 80 66 73 Idents we minimum ity to Syn 0	above 92 81 87 ere eligible 1 qualifyin 1 posium v	above 100 100 100 e for a ng						
	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_j $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $\frac{3\pi}{2}$ is (b) $\frac{1}{2}\log 2$ (d) None of the above y_2, \dots, A_{30} are 30 sets each having 5 y_2, \dots, B_n are <i>n</i> sets such that	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar	above 9 4 7 n that at l on Chem emistry f nge:	above 32 21 27 least 3 stu istry, the for eligibil	above 80 66 73 Idents we minimum ity to Syn 0	above 92 81 87 ere eligible 1 qualifyin 1 posium v	above 100 100 100 e for a ng						
	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n =	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $\frac{3\pi}{2}$ is (b) $\frac{1}{2} \log 2$ (d) None of the above y, \dots, A_{30} are 30 sets each having 5 y, \dots, B_n are <i>n</i> sets such that = <i>s</i> . If each element of S belongs to $y's$ and exactly nine of the $B'_j s$, then	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20	above 9 4 7 n that at l on Chem emistry f nge: 0	above 32 21 27 least 3 stu istry, the for eligibil (b) 20 - 3 (d) Canno	above 80 66 73 Idents we minimum ity to Syn 0 ot be dete	above 92 81 87 ore eligible qualifyin nposium v	above 100 100 100 e for a ng would						
	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A_1 n = (a) 15	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e,, A_{30} are 30 sets each having 5 (f) $\frac{\pi}{2}$,, B_n are n sets such that (f) sets that (h) $\frac{\pi}{2}$ sets the element of S belongs to (h) $\frac{\pi}{2}$ sets and exactly nine of the B'_j s, then (h) $\frac{\pi}{2}$	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the ran (a) 30 - 40 (c) Below 20 59. What is the	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc	above 32 21 27 least 3 stu istry, the for eligibil (b) 20 - 3 (d) Canno e between	above 80 66 73 Idents we minimum ity to Syn 0 ot be dete	above 92 81 87 re eligible qualifyin posium v ermined ber of stu	above 100 100 e for a ng would						
	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n =	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$ and $\frac{3\pi}{2}$ is (b) $\frac{1}{2} \log 2$ (d) None of the above y, \dots, A_{30} are 30 sets each having 5 y, \dots, B_n are <i>n</i> sets such that = <i>s</i> . If each element of S belongs to $y's$ and exactly nine of the $B'_j s$, then	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with	above 9 4 7 n that at 1 on Chem emistry f nge: 0 differenc 30 as cut	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num as in Chen	above 92 81 87 re eligible qualifyin posium v ermined ber of stu	above 100 100 e for a ng would						
49.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f),, B_n are n sets such that (f) are solved as the set of t	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the ran (a) 30 - 40 (c) Below 20 59. What is the	above 9 4 7 n that at 1 on Chem emistry f nge: 0 differenc 30 as cut 30 as cut	above 32 21 27 least 3 stu istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark it-off mark	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num as in Chen	above 92 81 87 re eligible qualifyin posium v ermined ber of stu	above 100 100 100 e for a ng would						
49.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e,, A_{30} are 30 sets each having 5 (for a set such that (for a set such that (for a set set such that (for a set	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with (a) 3	above 9 4 7 n that at l on Chem emistry f nge: 0 differencc 30 as cut 30 as cut	above 32 21 27 least 3 stu istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark it-off mark (b) 4	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num as in Chen	above 92 81 87 re eligible qualifyin posium v ermined ber of stu	above 100 100 e for a ng would						
49.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e,, A_{30} are 30 sets each having 5 (for a set such that (for a set such that (for a set set such that (for a set	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with	above 9 4 7 n that at l on Chem emistry f nge: 0 differencc 30 as cut 30 as cut	above 32 21 27 least 3 stu istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark it-off mark	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num as in Chen	above 92 81 87 re eligible qualifyin posium v ermined ber of stu	above 100 100 e for a ng would						
49.	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f) A_{30} are n sets such that (f) A_{30} are n sets such that (f) A_{30} are n sets such that (h) A_{30} are n sets such the B_{j}'s, then (f) A_{30} are n sets numbers 1, 2,, (h) A_{30} are n sets 1, 2,	(Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with (a) 3 (c) 5	above 9 4 7 n that at l on Chem emistry f nge: 0 differencc 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark tt-off mark (b) 4 (d) 6	above 80 66 73 adents we minimum ity to Syn 0 ot be dete n the num s in Chen s in Aggr	above 92 81 87 re eligible qualifyin nposium v ermined ber of stu nistry and egate?	above 100 100 100 e for a ng would						
49.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f) A_{30} are n sets such that (f) A_{30} are n sets such that (f) A_{30} are n sets such that (h) A_{30} are n sets such the B_{j}'s, then (f) A_{30} are n sets numbers 1, 2,, (h) A_{30} are n sets 1, 2,	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with (a) 3 (c) 5 60. If at least 60 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as cut	above322127least 3 stu- istry, the for eligibil(b) 20 - 3 (d) Canno(b) 20 - 3 (d) Canno(b) 4 (b) 4 (d) 6(c) 4 (d) 6	above 80 66 73 idents we minimum ity to Syn 0 ot be dete n the num its in Chen its in Aggr	above 92 81 87 re eligible qualifyin nposium v ermined ber of stu nistry and egate? uired for	above 100 100 e for a ng would idents those						
49.	curves defined by y $y = \cot x, \frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f) A_{30} are n sets such that (f) A_{30} are n sets such that (f) A_{30} are n sets such that (h) A_{30} are n sets such the B_{j}'s, then (f) A_{30} are n sets numbers 1, 2,, (h) A_{30} are n sets 1, 2,	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with (a) 3 (c) 5 60. If at least 60 pursuing hig 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark t-off mark (b) 4 (d) 6 s in Physic ies in Physic	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num cs in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined ber of stu histry and egate? uired for many stu	above 100 100 100 e for a ng would idents i those						
49.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e,, A_{30} are 30 sets each having 5 (for a set such that (for a set such that (for a set set such that (for a set	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut 30 as cut 9% marks gher stud ole to pur	above 32 21 27 least 3 stu- istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark (c) 4 (d) 6 s in Physic ies in Physic ies in Physic	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num cs in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined ber of stu histry and egate? uired for many stu	above 100 100 100 e for a ng would idents i those						
49.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is} \qquad (b) \frac{1}{2} \log 2 \qquad (d) \text{ None of the above}$ $(b) \frac{1}{2} \log 2 = 2 \qquad (d) \text{ None of the above}$ $(c) = (c) + (c) $	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark (t-off mark (d) 6 s in Physic ies in Phy- sue higher (b) 32	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num cs in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined ber of stu histry and egate? uired for many stu	above 100 100 100 e for a ng would idents i those						
49. 50.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A n = (a) 15 (c) 75 If a number x is sel 100, then the proba (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f),, B_n are n sets such that (f) are an exactly nine of the B'_j s, then (f) 45 (f) 90 (h) 45 (f) 90 (h) $\frac{39}{50}$ (h) $\frac{39}{50}$ (h) $\frac{43}{50}$ (h) $\frac{43}{50}$ (h) $\frac{43}{50}$ (h) $\frac{43}{50}$	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark (d) 6 s in Physic ies in Physic ies in Physic	above 80 66 73 dents we minimum ity to Syn 0 ot be dete n the num cs in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined ber of stu histry and egate? uired for many stu	above 100 100 100 e for a ng would idents i those						
49. 50.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is} \qquad (b) \frac{1}{2} \log 2 \qquad (d) \text{ None of the above}$ $(b) \frac{1}{2} \log 2 = 2 \qquad (d) \text{ None of the above}$ $(c) = (c) + (c) $	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 	above 9 4 7 n that at 1 on Chem emistry f age: 0 differenc 30 as cut 30 as cut 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark (d) 6 s in Physic ies in Phy- rsue higher (b) 32 (d) 41	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those idents s?						
49. 50.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 elements and B_1, B_2 exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba- (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (e),, A_{30} are 30 sets each having 5 (f), a_{2}, \dots, B_{n} are n sets such that (f) a_{2}, \dots, B_{n} are n sets such that (h) a_{5} (g) a_{5} (h) $\frac{39}{50}$ (g) $\frac{39}{50}$ (g) Hyena	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark (d) 6 s in Physic ies in Phy- rsue higher (b) 32 (d) 41	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those						
49. 50. 51.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba- (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra (c) Rhinoceros	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f) A_{30} are n sets such that (f) A_{30} are n sets sets are n sets (f) Hyena (f) A_{30} are n sets (f) A_	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number aggregate is 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as c	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark (b) 4 (d) 6 s in Physic ies in Physic ies in Physic ies in Physic (b) 32 (d) 41 nts scorin	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those						
49. 50. 51.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^{n} B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba- (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra (c) Rhinoceros ert the missing num	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f) A_{30} are n sets such that (f) A_{30} are n sets sets (f) Hyena (f) A_{30} are n sets (f) A_{	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number aggregate is (a) 13 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as c	above 32 21 27 least 3 stu- istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark (b) 4 (d) 6 s in Physic ies in Physic ies in Physic ies in Physic ies in Physic (d) 41 nts scorin (b) 19	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those						
49. 50. 51.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A n = (a) 15 (c) 75 If a number x is sel 100, then the proba (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra (c) Rhinoceros ert the missing num 16, 33, 65, 131, 262	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (d) None of the above (e),, A_{30} are 30 sets each having 5 (f) A_{30} are n sets such that (f) A_{30} are n sets sets (f) Hyena (f) A_{30} are n sets (f) A_{	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number aggregate is 	above 9 4 7 n that at l on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut 30 as cut 30 as cut 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark (b) 4 (d) 6 s in Physic ies in Physic ies in Physic ies in Physic (b) 32 (d) 41 nts scorin	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those						
49. 50. 51.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A n = (a) 15 (c) 75 If a number x is sel 100, then the proba (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra (c) Rhinoceros ert the missing num 16, 33, 65, 131, 265 (a) 523	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is} \qquad (b) \frac{1}{2} \log 2 \qquad (d) \text{ None of the above}$ $(b) \frac{1}{2} \log 2 \text{ and } x = 30 \text{ sets each having 5} \\ (c) -(c) -(c) -(c) -(c) -(c) -(c) -(c) $	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number aggregate is (a) 13 (c) 20 	above 9 4 7 n that at 1 on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut 30 as cut 30 as cut 30 as cut 30 as cut	above 32 21 27 least 3 stu- istry, the for eligibil (b) 20 - 3 (d) Canno e between t-off mark (d) 6 s in Physic ies in Phy- sue higher (b) 32 (d) 41 nts scorin (b) 19 (d) 27	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those						
49. 50. 51.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A n = (a) 15 (c) 75 If a number x is sel 100, then the proba (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra (c) Rhinoceros ert the missing num 16, 33, 65, 131, 262	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is} \qquad (b) \frac{1}{2} \log 2 \qquad (d) \text{ None of the above}$ $(b) \frac{1}{2} \log 2 \qquad (d) \text{ None of the above}$ $(c) -(c) -(c) -(c) -(c) -(c) -(c) -(c) -$	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number aggregate is (a) 13 (c) 20 Choose the miss 	above 9 4 7 n that at 1 on Chem emistry f nge: 0 differenc 30 as cut 30 as cut 30 as cut 9% marks gher stud ole to pur • of stude: : ing term:	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e betweer t-off mark (d) 6 s in Physic ies in Phy- sue higher (b) 32 (d) 41 nts scorin (b) 19 (d) 27	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those						
49. 50. 51. Inse 52.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_2 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A n = (a) 15 (c) 75 If a number x is sel 100, then the proba (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra (c) Rhinoceros ert the missing num 16, 33, 65, 131, 265 (a) 523	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (e),, A_{30} are 30 sets each having 5 (f), B_n are n sets such that (f) $a_1 = s$. If each element of S belongs to (f) $a_2 = s$. If each element of the B_j 's, then (f) $a_1 = s$. If each element of the B_j 's, then (f) $a_2 = s$. If each element $a_1 = s$. If each element $a_1 = s$. If each element $a_2 = s$. If each element $a_3 = s$. If each element $a_4 = s$.	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number aggregate is (a) 13 (c) 20 Choose the miss 62. BTCX : DWE 	above 9 4 7 n that at 1 on Chem emistry f age: 0 differenc 30 as cut 30 as cut 30 as cut w marks gher stud ole to pur • of stude : ing term: W :: FUGT	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e between t-off mark (d) 6 s in Physic ies in Phy- sue highe (b) 32 (d) 41 nts scorin (b) 19 (d) 27 F : ?	above 80 66 73 idents we minimum ity to Syn 0 ot be dete of the num its in Chen ks in aggr	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents i those						
49. 50. 51. Inse 52.	curves defined by y $y = \cot x$, $\frac{\pi}{6} \le x \le$ (a) $-\frac{1}{2}\log 2$ (c) $\log 2$ Suppose that A_1, A_2 elements and B_1, B_1 $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j =$ exactly ten of the A_1 n = (a) 15 (c) 75 If a number x is sel 100, then the proba- (a) $\frac{37}{50}$ (c) $\frac{41}{50}$ Choose the odd one (a) Zebra (c) Rhinoceros ert the missing num 16, 33, 65, 131, 262 (a) 523 (c) 613	$y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3} \text{ and}$ $\frac{3\pi}{2} \text{ is}$ (b) $\frac{1}{2} \log 2$ (d) None of the above (e),, A_{30} are 30 sets each having 5 (f), B_n are n sets such that (f) $a_1 = s$. If each element of S belongs to (f) $a_2 = s$. If each element of the B_j 's, then (f) $a_1 = s$. If each element of the B_j 's, then (f) $a_2 = s$. If each element $a_1 = s$. If each element $a_1 = s$. If each element $a_2 = s$. If each element $a_3 = s$. If each element $a_4 = s$.	 (Full marks 50) Physics Chemistry Aggregate average 58. If it is know Symposium marks in Ch lie in the rar (a) 30 - 40 (c) Below 20 59. What is the passed with passed with passed with (a) 3 (c) 5 60. If at least 60 pursuing hig will be eligil (a) 27 (c) 34 61. The number aggregate is (a) 13 (c) 20 Choose the miss 	above 9 4 7 n that at 1 on Chem emistry f age: 0 differenc 30 as cut 30 as cut 30 as cut w marks gher stud ole to pur • of stude: : ing term: W :: FUGT	above 32 21 27 least 3 stu- istry, the or eligibil (b) 20 - 3 (d) Canno e betweer t-off mark (d) 6 s in Physic ies in Phy- sue higher (b) 32 (d) 41 nts scorin (b) 19 (d) 27	above 80 66 73 idents we minimum ity to Syn 0 ot be detered by the num sin Chen sin Chen sin aggression aggression aggression aggression aggression aggression and sin aggression aggression and sin aggression aggression aggression and sin aggression aggreson ag	above 92 81 87 re eligible qualifyin posium v ermined aber of stunistry and egate? uired for many stuin physic	above 100 100 e for a ng would idents it hose idents s?						

63. QIF, S2E, U6D, W21C, ? (a) Y66B (b) Y44B (c) Y88B (d) Z88B 64. 7: 56 :: 9 : ? (a) 63 (b) 81 (c) 90 (d) 99 65. If 'A3T15R' stands for 'ACTOR' and 'D1T5' stands for DATE, how will you code 'ROTATE' (a) R16T1T5 (b) R15T1T5 (c) R15T1T16 (d) R15C187 66. COUNSEL is to BITRAK, so also GUIDANCE is to? (a) EOHYZKBB (b) FOHYZJBB (c) PHZZKAB (d) HOHYBJBA A company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 60 60 60 60 60 60 60 60 60 6
(c) Y88B(d) Z88BI. $P \Downarrow Q$ means P64. 7: 56: 9:?(a) 63(b) 81(c) 90(d) 9965. If 'A3T15R' stands for 'ACTOR' and 'D1T5' stands for DATE, how will you code 'ROTATE' (a) R161115(b) R15T1T5(c) U $\Downarrow R \in S$ (a) EOHYZKBB(b) FOHYZJBB(c) VU $\Downarrow R \in S$ (c) V $\Downarrow R \in S$ 66. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB(c) FOHYZJBB(c) V $\Downarrow M \notin R$ 74. If K $\Downarrow L \in M$ (a) EOHYZKBB(b) FOHYZJBB(c) K $\Downarrow M \notin$ 75. Choose the different products. The sales of these five products (in lakh number of packs) of five different products of a company during 2005-201075. Choose the v underlined V (c) Great Au76. There are siz is the grand(a) Autumn (c) Stockpile76. There are siz is the grand (c) Reale have increased by nearly 55% from 2005 to 2010 in case of: (a) Product A (c) Product B76. There are siz is the grand (c) Product C (d) Product D77. The sales have increased by nearly 55% from 2005 to 2010 in case of (c) Product A (c) 28%78. If it is Saturc would have (a) 33% (b) 31% (c) 28%79. Choose the pair of number that comes next: (a) Product A (b) Product B79. Choose the v the given th (a) Black (c) White79. Choose the pair of number that comes next: (a) Product A (b) Product B79. Choose the v the given th (a) Black (c) White79. Choose the pair of number that comes next: (a) Product A (b) Product B79. Choose the v the given th (a) 25 22 (b) 26 24
I. $P \in Q$ means F64. 7: 56 :: 9 :?(a) 63(b) 81(c) 90(d) 99(c) 10 $P \in Q$ means F65. If 'A3T15R' stands for 'ACTOR' and 'D1T5' stands for DATE, how will you code 'ROTATE'(a) R15'115(a) R15'1175(b) R15'1175(c) U $\Downarrow R \in S$ (c) R15'1176(d) R15C1&766. COUNSEL is to BITIRAK, so also GUIDANCE is to?(a) K\$L # M(c) FPHZZKAB(b) POHYZJBB(c) FPHZZKAB(d) HOHYBJBAA company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph.Sales (in lakh number of packs) of five different products of a company during 2005-20106048.176176. There are si is the grandi the uncle of (a) Sister (c) Product A76. The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) 233%77. Find the mat more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33%79. Choose the pair of number that comes next: (a) Product A70. Drood ct A (c) Product D71. In rease in sales in the case of: (c) Product A72. Which wordd (c) Product A73. Which wordd (c) Product A74. If K \Downarrow L = M (c) Product C75. Choose the pair of number that comes next: (a) Product A76. The sales of Product B (c) Product C77. Find the mat (c) 28%78. If it is Sature (c) White79. Choose the pair of number that comes next: (a) Product A<
64. 7: 56: 9 ?III. P \$ Q means 1(a) 63(b) 81(c) 90(d) 9965. If 'A3T15R' stands for 'ACTOR' and 'D1T5' stands for DATE, how will you code 'ROTATE' (a) R16T1T5 (c) R15T1T16 (d) R15C1&766. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB (c) FPHZZKAB (d) HOHYBJBA74. If K ψ L \in M (a) K \pm L $\#$ M (c) K ψ M $\#$ 75. Choose the values of the different products. The sales of these five products (in lakh number of packs) of five different products of a company during 2005-201060 50 50 6061 50 60 60 60 60 60 60 60 60 61 61 61 62 6267. The sales have increased by nearly 55% from 2005 to 2010 61 62 6268. The sales of Product C (c) Product A (c) 28% (c) 28% (d) 22%69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (c) Product A (c) Product A (c) Product B (c) Product C69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (c) Product A (c) 28% (d) 22%69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (c) Product A (c) Product B (c) Product B (c) Product C69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (c) Product D69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (c) Product D69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (c) Product D69. During the period 2005-2010, the minimum rate of increase in sales in the case of
(a) 63 (b) 81 (c) 90 (d) 99 (c) 90 (d) 99 (c) 90 (d) 99 (c) 1157 (c) R1571716 (d) R157175 (c) R1571716 (d) R157175 (c) R1571716 (d) R15C1&7 (e) F0HZZKAB (d) H0HYBJBA A company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 (c) $\frac{448.17}{2005-2010}$ (c) Great Au the uncle of 2010 $\frac{448.17}{2005-2010}$ (c) Stockpile (c) Reptween the sales of product A Product B Product C Product D (c) Product A Product B Product C Product D (c) Product A (b) Product B (c) Product A (b) Product B (c) Product C (d) Product D (a) 33% (b) 31% (c) 28% (d) 22% (c) Noose the pair of number that comes next: 10 Product A (b) Product E (c) Product A (b) Product E (c) Romath the case of: (c) Product A (b) Product B (c) Product A (b) Product B (c) Product A (c) 22% (c) Noose the pair of number that comes next: 110 7 20 13 30 19 (c) 25 22 (b) 26 24
(c) 90(d) 9972. Which of the (a) R \Downarrow 5 # U65. If 'A3T15R' stands for 'ACTOR' and 'D1T5' stands for DATE, how will you code 'ROTATE' (a) R 15T1T5 (c) R 15T1T16 (d) R 15C1&773. Which of the (a) R \Downarrow 5 # U66. COUNSEL is to BITIRAK, so also GUIDANCE is to (a) EOHYZKBB (c) FPHZZKAB (d) HOHYBJBA74. If K \Downarrow L \in M (a) Mother (c) G reat Au74. If K \Downarrow L \in M (a) EOHYZKBB (c) FPHZZKAB (d) HOHYBJBA74. If K \Downarrow L \in M (a) Mother (c) Great Au75. Choose the v and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-201075. Choose the v (a) autumn (c) Stockpile76. There are six is the grandit the uncle of (a) Sister (c) Product A (c) Product B (c) Product C (d) Product D70. Find the mat (a) Sister (c) Nephew77. Find the mate (a) Sister (a) Product C9. Product B (c) Product C (d) Product D2005 (d) Tick: R78. The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product C10. Product B (c) Product D78. If it is Saturc (a) Monday (c) Tuesday79. Choose the v the given the (a) 33% (c) 28% (d) 22%10. Product B (c) Product C80. Choose the v the given th (a) 9 (c) 15270. Choose the pair of number that comes next: 110 7 20 13 30 19 (a) 25 22 (b) 26 2481. Which word (a) wing (c) beak
65. If 'A3T15R' stands for 'ACTOR' and 'D1T5' stands for DATE, how will you code 'ROTATE' (a) R16T1T5 (b) R15T1T5 (c) R15T1T16 (d) R15C1&7(a) R(b) R15T1T5 (c) R15T1T16 (d) R15C1&766. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA73. Which of the K? (a) K\$L # M (c) FPHZZKAB (d) HOHYBJBA74. If K $\psi L \in M$ (a) EoHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA74. If K $\psi L \in M$ (a) Mother (c) Great Au75. Choose the vandard file are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-201075. Choose the v underlined w (a) autumn (c) stockpile76. There are show in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-201076. There are shi is the grandit the uncle of (a) Sister (c) Stockpile77. Find the mate (a) Once take to the sales of Product B (c) Product A Product B Product C Product D2005 200178. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22%78. If it is Sature would have (c) Tuesday79. Choose the pair of number that comes next: 110 7 20 13 30 19 (a) 25 22 (b) 26 2481. Which word (a) wing (c) beak
 65. If 'A3T15R' stands for 'ACTOR' and 'D1T5' stands for DATE, how will you code 'ROTATE' (a) R16T1T5 (b) R15T1T5 (c) R15T1T16 (d) R15C187 66. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA 74. If K \u03c6 L \u23c6 M \u03c6 M \u
DATE, how will you code 'ROTATE' (a) R16TIT5 (b) R15TIT5 (c) R15TIT16 (d) R15C1&7 66. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA A company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 $ \begin{array}{c} 48.17 \\ 20.15 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.17 \\ 20.13 \\ 20.17 \\ 20.13 \\ 20.17 \\ 20.13 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.16 \\ 20.17 \\ 20.13 \\ $
(a) R16T1T5 (b) R15T1T5 (c) R15T1T6 (d) R15C1&7 66. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA A company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 60 - 48.17 - 5.93 - 4.92 - 2.010 - 2.010 - 2.010 - 2.010 - 2.015 - 2.010 - 2.0
(c) R15T1T16(d) R15C1&766. COUNSEL is to BITIRAK, so also GUIDANCE is to?(a) EOHYZKBB(b) FOHYZJBB(c) FPHZZKAB(d) HOHYBJBAA company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 $60 - 48.17$ $40 - 48.17$ $10 - 9 - 593 - 48.17$? $60 - 48.17$ $10 - 9 - 700 + $
 66. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA 74. If K \u03c6 L \u2266 M (e) FOHZZIAB (d) HOHYBJBA 74. If K \u03c6 L \u2266 M (e) FOHZZKAB (d) HOHYBJBA 74. If K \u03c6 L \u2266 M (e) FOHZZIAB (d) HOHYBJBA 75. Choose the vinderlined vi
 66. COUNSEL is to BITIRAK, so also GUIDANCE is to? (a) EOHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA 74. If K ψ L ∈ M (a) Mother (c) FPHZZKAB (d) HOHYBJBA 75. Choose the v underlined v (a) autumn (c) stockpile (c) autumn (c) stockpile (c) stockpile (c) roduct A roduct B roduct C roduct D (c) Product A (b) Product B (c) Product A (c) White (a) Black (c) White (b) Product A (c) White (c) Product A
 (a) EOHYZKBB (b) FOHYZJBB (c) FPHZZKAB (d) HOHYBJBA A company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 (c) Stockpile (c) I have a subset of the different product of a company during 2005-2010 (c) Stockpile (c) Stockpile (c) Nephew (c) Stockpile (c) Nephew (c) Stockpile (c) Nephew (c) Stockpile (d) Trick : R (e) Product A (b) Product B (c) Product C (d) Product D (f) The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product A (b) Product B (c) Product D (b) Product B (c) Product C (d) Product D (c) Product C (d) Product D (c) Product A (b) Product B (c) 28% (c) 22% (d) Product A (b) Product B (c) Product C (c) White (e) Product A (b) Product B (c) Product C (c) Product C (c) White (f) The sales in the case of: (g) Product A (b) Product B (c) Product C (c) Product C (c) Product C (c) Product C (c) 28% (c) 22% (h) S1% (c) 28% (c) 22% (c) Nephew (d) Product A (b) Product B (c) Product C (c) Yhite Product A (c) Product C (c) White (a) Product A (b) Product B (c) Product C (
 (c) FPHZZKAB (d) HOHYBJBA 74. If K \u03c0 L \u2260 Moher 75. Choose the y and 2010 are shown in the following bar-graph. Question is based on this graph. 76. The sales (in lakh number of packs) of five different products of a company during 2005-2010 76. There are sin is the granding of the different product of the grand the uncle of (a) Sister (c) Nephew 76. The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product A (b) Product B (c) Product C (c) Product C (d) Product D 77. Find the mat (a) Dance : 7 (b) Food : Ro (c) Product C (d) Product D (e) Product C (f) The sales of Product B (f) Product C (g) Product C (h) Product B (h) Product B (h) Product C (h) Product C (h) Product B (h) Product A (h) Pro
 A company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 60 61 62 63 64 64 64 65 66 67 67. The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product B (c) Product A (b) Product B (c) Product C (d) Product D 68. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product A (b) Product B (c) Product D (d) Product B (c) Product C (d) Product C (c) White 80. Choose the pair of number that comes next: 107 20 13 30 19 (c) bask
 A company produces five different products. The sales of these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 Choose the yain of packs) of five different products of a company during 2005-2010 A the sales of product A product C product D product E The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product A (b) Product B (c) Product C (d) Product D Find the mate of the sales of Product A in 2010 was by what percent more than the sales of Product D in case of: (a) 33% (b) 31% (c) 28% (d) 22% Choose the pair of number that comes next: (a) Product A (b) Product B (c) Product C (d) Product B (e) Product A (f) 31% (f) The sales in the case of: (a) Product A (b) Product B (c) Product C Black (c) 28% (d) 22% Choose the pair of number that comes next: (a) 25 22 (b) 26 24
 these five products (in lakh number of packs) during 2005 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 75. Choose the v underlined v (a) autumn (c) stockpile 76. There are six is the grandit the uncle of (a) Sister (c) Nephew 77. Find the mai (a) Darce 17 (b) Food : R (c) Product A Product B Product C Product D Product E 78. If it is Saturation (c) Product C (c) Product B (c) Product C (c) Product D (c) Product C (c) Product D (c) Produ
 and 2010 are shown in the following bar-graph. Question is based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 60 61 620,15 620,10 61,10 620,15 620,15 620,10 630,20,15 648,17 648,17 659,20,10 648,17 659,20,10 6448,17 650,20,10 650,20,10 660,20,10 670,20,10 680,20,20,10 690,20,10 691,20,20,10 691,20,20,10 692,20,10 692,20,10 693,20,20,20,20,10 694,20,20,20,20,10 694,20,20,20,20,10 695,20,20,20,20,10 696,20,20,20,20,10 697,20,20,20,20,10 698,20,20,20,20,20,10 699,20,20,20,20,10 691,20,20,20,20,10 691,20,20,20,20,10 692,20,20,20,20,10 693,20,20,20,20,10 694,20,20,20,20,10 694,20,20,20,20,10 694,20,20,20,20,10 694,20,20,20,20,10 695,20,20,10 696,20,20,10 697,20,20,20,10 790,20,20,20,20,10 790,20,20,20,20,10 790,20,20,20,20,10 791,20,20,20,20,10 792,20,20,20,20,20,10 793,20,20,20,20,20,10 794,20,20,20,20,20,20,20,20,10 795,20,20,20,20,20,20,20,20,20,20,20,20,20,
 based on this graph. Sales (in lakh number of packs) of five different products of a company during 2005-2010 (a) autumn (c) stockpile (b) food : Rai (c) Product A Product B Product C Product D Product E (c) Product A (b) Product B (c) Product C (d) Product D (c) Product A (b) Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% (c) Product A (b) Product B in 2010? (rounded off increase in sales in the case of: (a) Product A (b) Product B in 2010? (rounded off increase in sales in the case of: (a) Product A (b) Product B (c) Product C (c) Product B in 2010? (rounded off increase in sales in the case of: (a) Product A (b) Product B (c) Product C (c) Product C
Sales (in lakh number of packs) of five different products of a company during 2005-2010 60 48.17 (a) autumn (c) stockpile 10 37.16 29.14 2005 20 37.16 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 14.97 7.88 5.01 10 9 7.88 5.01 0 $Product A$ $Product C$ $Product D$ 67 The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product C(b) Product B (c) Product C(d) Product D 78 (c) Product C(d) Product D 79 (c) Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% 79 (a) Product A(b) Product B 79 (c) Product A(b) Product B (c) Product A(b) Product B (c) Product D 49 (c) Product A 79 (d) Product C (d) Product B (c) Product C (d) Product C
company during 2005-2010 (c) stockpile (c) stockp
 60 61 62 63 64 64 64 65 65 66 76 78 78 70 <
50 48.17 76. There are size is the grandly the uncle of (a) Sister (c) Nephew20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 20.15 29.14 2005 20 14.97 12.21 10.19 0 Product A product B product C Product D Product E 2010 67. The sales have increased by nearly 55% from 2005 to 2010 in case of: (c) Product C (d) Product B $78.$ If it is Saturd would have (a) Monday (c) Tuesday68. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (c) 28% $79.$ Choose the v the given thi (a) Black (c) White69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D $80.$ Choose the c $+2! + 3! +$ (a) 9 (c) 15270. Choose the pair of number that comes next: $110 7 20 13 30 19$ (c) 25 22 $81.$ Which word (a) wing (c) beak
 50 50 51 50 50 50 50 50 20.15 20.16 20.17 14.97 12.21 10.19 20.05 20.01 20.05 20.05<
$\begin{array}{c} 40 \\ 40 \\ 37.16$
 (a) Sister (c) Nephew (d) Trick : R (e) Product A (b) Product B (c) Product C (d) Product D (c) Tuesday (c) Tuesday (c) Tuesday (c) Nephew (c) Product C (d) Product B in 2010? (rounded off to the nearest integer) (a) Product A (b) Product B in 2010? (rounded off to the nearest integer) (a) Product A (b) Product B (c) Product C (d) Product B (c) Product A (b) Product B (c) Product D (d) Product E 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product C (c) Product C (d) Product E 69. Choose the pair of number that comes next: (a) 9 (c) 152 81. Which word (a) wing (c) beak
 30 20.15 20.15 20.15 20.15 20.15 20.15 20.10
 20.15 20.16 20.16 20.17 20.17 20.16 20.17 20.17 20.16 20.17 20.17 20.16 20.17 <
 20 <
 10 <
 b) Food : Reference (C) Product A Product B Product C Product D Product E 67. The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product A (b) Food : Reference (C) Patient : (c) Patient : (d) Trick : R 68. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24
 Product A Product B Product C Product D Product E (c) Patient : (d) Trick : R (d) Trick : R (e) Product A (b) Product B (c) Product C (d) Product D (f) Product C (d) Product D (g) Product C (d) Product D (h) Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (g) 33% (b) 31% (c) 28% (d) 22% (g) Product A (b) Product B (c) Product D (d) Product E (a) Product A (b) Product B (c) Product D (d) Product E (b) Product E (c) Product A (b) Product B (c) Product D (c) Product D (d) Product E (a) Product A (b) Product E (b) Product E (c) Product D (d) Product E (c) Product D (d) Product E (c) Product A (b) Product B (c) Product D (c) Product D (c) Product D (c) Product C) (a) Product A (b) Product B (c) Product C) (b) Product E (c) Product D (c) Product C (c) Product C) (c) Product D (c) Product C) (c) Product D (c) Product C) (c) Product A (c) Product E (c) Product D (c) Product C) (c) Product C) (c)
 Product A Product B Product C Product D Product E (d) Trick : R (e) Product A (b) Product B (c) Product C (d) Product D (f) Product A (b) Product D (g) Product C (d) Product D (g) Product C (d) Product D (g) Monday (c) Tuesday (h) Monday (h) Monday (h) Monday (h) Monday (h) Monday (h) Monday (h) Monday (h) Monday
 67. The sales have increased by nearly 55% from 2005 to 2010 in case of: (a) Product A (b) Product B (c) Product C (d) Product D 68. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24
 2010 in case of: (a) Product A (b) Product B (c) Product C (d) Product D 68. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24
 (a) Product A (b) Product B (c) Product C (d) Product D (b) Product D (c) Product C (d) Product D (c) Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% (b) Product B (c) 28% (d) 22% (c) White (c) Product A (b) Product B (c) Product A (b) Product B (c) Product D (d) Product E (c) Product D (d) Product E (c) Choose the pair of number that comes next: 1 10 7 20 13 30 19 (c) beak (a) 25 22 (b) 26 24
 (c) Product C (d) Product D (a) Monday (c) Tuesday (b) The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% (b) During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E (b) Choose the pair of number that comes next: 1 10 7 20 13 30 19 (c) beak
 68. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% (e) During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 80. Choose the case of: (a) 9 (c) 152 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24
 68. The sales of Product A in 2010 was by what percent more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24
 more than the sales of Product B in 2010? (rounded off to the nearest integer) (a) 33% (b) 31% (c) 28% (d) 22% (e) 205-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 80. Choose the case of: (a) 9 (c) 152 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24
to the nearest integer)the given the (a) 33% the given the (a) 81% (a) 33% (b) 31% (c) 28% (d) 22% 69. During the period 2005 -2010, the minimum rate of increase in sales in the case of: (a) Product A (c) Product D80. Choose the c + $2! + 3! +$ (a) 9 (c) 15270. Choose the pair of number that comes next: $1 10 7 20 13 30 19$ (a) $25 22$ 81. Which word (a) wing (c) beak
(a) 33% (b) 31% (a) Black(c) 28% (d) 22% (e) White69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (c) Product D80. Choose the c + $2! + 3! + .$ (a) 9 (c) 15270. Choose the pair of number that comes next: $1 10 7 20 13 30 19$ (a) $25 22$ 81. Which word (c) beak
 (c) 28% (d) 22% (c) White 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24
 69. During the period 2005-2010, the minimum rate of increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24 80. Choose the comparison of the minimum rate of the minimum ra
increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E $+ 2! + 3! + .$ (a) 9 (c) 15270. Choose the pair of number that comes next: $1 10 7 20 13 30 19$ (a) 25 22 (b) 26 2481. Which word (a) wing (c) beak
increase in sales in the case of: (a) Product A (b) Product B (c) Product D (d) Product E (a) 9 (c) 152 70. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 22 (b) 26 24 (b) 26 24
(c) Product D(d) Product E(c) 15270. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 2281. Which word (a) wing (c) beak
(c) Product D(d) Product E(c) 15270. Choose the pair of number that comes next: 1 10 7 20 13 30 19 (a) 25 2281. Which word (a) wing (c) beak
70. Choose the pair of number that comes next: 81. Which word 1 10 7 20 13 30 19 (a) 25 22 (a) 25 22 (b) 26 24
(a) wing (a) 25 22 (b) 26 24 (c) beak
1 10 7 20 13 30 19(a) wing(a) 25 22(b) 26 24(c) beak
(c) $26\ 23$ (d) $25\ 23$ 82. If $9 \times 3 + 8 =$
$\begin{array}{c} 82. \text{ If } 9 \times 3 + 8 \\ \text{then find the} \end{array}$
The t
71 In this series looking at the letter nattern till the blank in
1. In this series looking at the letter pattern fill the blank in (a) 7
71. In this series looking at the letter pattern fill the blank in (a) 7
(a) 7 (b) 71. In this series looking at the letter pattern fill the blank in the middle of the series: ELFS, GLHA, ILJA,, MLNA (c) 7 (c) 12
71. In this series looking at the letter pattern fill the blank in the middle of the series: (a) 7 ELFS, GLHA, ILJA,, MLNA (b) KLMA (a) 0LPA (b) KLMA
71. In this series looking at the letter pattern fill the blank in the middle of the series: ELFS, GLHA, ILJA,, MLNA (a) OLPA (a) 7 (c) 12 83. How many t
/ I in this series looking at the letter nattern till the blank in

NIMCET-2021

84. Choose the number pair or group that is different from others?
(a) 15:46
(b) 12:37
(c) 2.22

(c) 9:28(d) 8:3385. Choose the pair that best represents a similar

- relationship to the one expressed in the original pair of words: PULSATE : THROB
 - (a) walk : run
 - (b) tired : sleep
 - (c) examine : scrutinize
 - (d) ballet : dancer
- 86. In a certain code language, "do re me" means "he is late";
 "fa me la" means "she is early" and "so ti do" means "he leaves soon". Which word in the language means 'late"?
 (a) la
 (b) do
 - (c) me (d) re
- 87. In a class of 50 students, Raghu's rank is twice that of Paul. There are 10 students who have ranked worse than that of Raghu. Paul's rank in the class is:
 - (a) 5th (b) 10th (c) 15th (d) 20th
- 88. Choose the pair that best represents a similar relationship to the one expressed in the original pair of words: WAITRESS : RESTAURANT
 - (a) doctor : diagnosis
 - (b) actor : role
 - (c) driver : truck
 - (d) teacher : school
- 89. Radha is twice as old as Rita was 2 years ago. If difference between their ages is 2 years, how old is Radha today?

(a) 6	(b) 8
(c) 10	(d) 12

90. If Z = 52 and ACT = 48, then BAT will be equal to (a) 46 (b) 39 (c) 44 (d) 41

DIRECTIONS:

It is said with truth that the function of a university is to prepare the young to take their place in human society. It must provide its members with the knowledge and skill necessary to make them efficient citizens. But is the whole duty of man exhausted by the acquisition of knowledge and professional training? Is a university only an institution for higher learning, a factory which churns out clerks and technicians able to run the machinery of the State? Mere knowledge which gratifies curiosity is different from culture which refines personality. Culture is not remembering a mass of serious details about the dates of birth of the great heroes of the world or the interesting names of the fastest ships which cross the Atlantic or entertaining odds and ends gathered from the latest who's who. A well-known institution of this country has for its motto savidyayavimuchyate: that is, knowledge which is designed for salvation, for the development of the soul, is the best. Such an idea is not merely an Indian idiosyncrasy. Plato said long ago that the culture of soul is "the first and fairest thing that the best of

men can ever have. According to Goethe, the object of education is to form tastes and not simply to communicate knowledge. A man's culture is not judged by the amount of tabulated information which he has at his command, but by the quality of mind which he brings to bear on the facts of life. Education is not cramming the mind with a host of technical details, putting sight, as it were, into blind eyes. The eye of the soul is never blind, only its gaze may be turned to the false and the fleeting. Too often the vision may be dragged downwards by the "leaden weights" of pride and prejudice, of passion and desire. The function of the teacher is not to add to the "leaden weights" but remove them and liberate the soul from the encumbrance so that it may follow its native impulse to soar upwards. The student at a university does not merely learn something, but becomes something by being exposed, in the most elastic period of his life, to transforming influences, such as the constant clash of mind with mind, the interchange of ideas, the testing of opinions, and the growth of knowledge of human nature.

- 91. What is a man's culture judged by?
 - (a) By the quality of mind which he brings to bear on the facts of life.
 - (b) By man's social skill.
 - (c) By the variety of books he reads.
 - (d) By money and influence.
- 92. What are the hindering factors in the liberation and development of the soul?(a) Power and wealth
 - (b) Passion and desire, pride and prejudice
 - (c) Money and influence
 - (d) Greed and envy
- 93. What is the function of education according to the

ancient Indian philosophers?

- (a) Education is the development of mind.
- (b) Education brings about salvation and development of the soul.
- (c) Education is the cultivation of culture.
- (d) Education aims at the inculcation of generosity.
- 94. What is the object of education according to Goathe?
 - (a) It teaches social manners.
 - (b) It teaches courtesy.
 - (c) It communicates knowledge.
 - (d) It forms taste.
- 95. What is meant by "leaden weights"?
 - (a) Weights made of leaden
 (b) Cold scientific knowledge
 (c) Hindering factors, of pride and prejudice, passion and desire, in the liberation of the soul.
 (d) Social and family responsibilities.
- 96. The function of university is:

(a) To enable the young to gather facts about the world.(b) To learn to do his job.

- (c) To prepare the young to take their place in society.
- (d) To enable them to learn to talk with others.

		NIMCE?	1-2021	
97.		nd culture may be distinguished from		e synonym of the given word:
	each other in that:		108. RECUPERATE	
		dens the mental horizon, the latter	(a) recapture	(b) reclaim
	enlarges the h		(c) recover	(d) recur
		atifies curiosity, the latter refines	109. SCINTILLATING	-
	personality.		(a) touching	(b) nagging
		concerned with facts, the latter with	(c) glittering	(d) warning
	fiction.	de te menuen the letter edde te	(c) gittering	(u) warning
		ds to power, the latter adds to	110. BLAND	
	prestige.		(a) pleasant	(b) harsh
ag	According to the p	assage, the function of the teacher is:	(c) irritating	(d) tasteless
<i>J</i> 0.		den weights of pride and prejudice,		
		esire to liberate the soul.		puter system with speed of 10 ⁶
		into the minds of the students.		ond. A program P, having 2n ² steps i
	(c) To teach huma			where n is the input size. If $n =$
	(d) To foster brot			execution time for P?
			(a) 2 seconds	
Fill	in the blank with th	ne most appropriate word given in the	(c) 100 seconds	(d) 200 seconds
			112. To fetch data fr	om the secondary memory which on
-	ions:		of the following reg	
99.	The wit	h which he is able to wi <mark>eld</mark> the pai <mark>nt</mark>	(a) MAR	(b) PC
	brush is really rem	arkable.	(c) IR	(d) MBR
	(a) ease	(b) practice		
	(c) sweep	(d) gait		TB) = GB and One
			ExaByte(EB) =	
100		nsportation Corpora <mark>tion has</mark> a	(a) 2 ¹⁰ GB, 2 ¹⁶ GB	
	loss of 5 crore INR	this year.	(c) 2 ¹⁰ Gb, 2 ²⁴ GB	(d) 2 ¹⁰ GB, 2 ³⁰ GB
	(a) derived	(b) incurred	114. The cache mem	ory is more effective because of
	(c) performed	(d) formulated	(a) Memory localiza	
101			(b) Locality of refer	
101		s rooms with ceilings.	(c) Memory size	chee
	(a) tall	(b) long (d) biab	(d) None of the mer	ntioned
	(c) higher	(d) high		
102	Lcannot	it to you right now; tomorrow we		'O devices the status flags is
102	will discuss about		continuously check	
	(a) demand	(b) disturb	(a) Program contro	
	(c) explain	(d) expect	(b) Memory mappe	d 1/0
	(0) 011914111	(4) 0.10000	(c) I/O mapped	
103	B. The car driver	was arrested for rash driving and his	(d) None of the abo	ve
	license was	0	116. Which of the fol	llowing is the fastest means of
	(a) impounded	(b) flown	memory access for	
	(c) penalized	(d) banned	(a) Registers	(b) Cache
			(c) Main memory	(d) Stack
Wr	ite one word for the			
104		/primitive person.		en processor fetch or decode anothe
	(a) barbarian	(b) ascetic	instruction during t	he execution of current instruction is
	(c) bourgeois	(d) altrust	called	
			(a) Supercomputing	
105		not save for future.	(c) Cloud computin	g (d) Grid computing
	(a) incorporeal	(b) inedible	118. Which of the fol	llowing is used by ALU to store the
	(c) improvident	(d) implacable	intermediate result	llowing is used by ALU to store the
ՐԻ	and the mast suit 1	le enterum of the given word	(a) Stack	(b) Heap
		ble antonym of the given word:	(c) Registers	(d) Accumulators
106		(b) motigularian aga	(c) negisters	(a) necalitations
	(a) diligence	(b) meticulousness	119. The number (22	217) ₈ is equivalent to
	(c) integrity	(d) honesty	$(a) (608)_{16}$	(b) $(028F)_{16}$
107	. ERUDITE		(c) $(048F)_{16}$	(d) $(2297)_{10}$
10/		(b) unfamiliar		
	(a) scholarly (c) illiterate	(d) arrogant	-	tiplication 00*11 will give
		(u) all ugant	(a) 11 (c) 01	(b) 00
				(d) 10

NIMCET-2021

ANSV	ANSWER KEY: NIMCET-2021-ACTUAL PAPER																		
1.	d	2.	b	3.	С	4.	d	5.	С	6.	b	7.	d	8.	b	9.	а	10.	b
11.	С	12.	а	13.	а	14.	b	15.	С	16.	а	17.	b	18.	С	19.	а	20.	С
21.	а	22.	С	23.	d	24.	С	25.	b	26.	а	27.	d	28.	b	29.	С	30.	С
31.	d	32.	b	33.	b	34.	b	35.	b	36.	d	37.	а	38.	b	39.	С	40.	d
41.	С	42.	С	43.	d	44.	b	45.	d	46.	а	47.	а	48.	С	49.	b	50.	b
51.	b	52.	а	53.	b	54.	b	55.	С	56.	d	57.	С	58.	b	59.	d	60.	b
61.	d	62.	С	63.	С	64.	С	65.	b	66.	b	67.	d	68.	С	69.	С	70.	С
71.	d	72.	b	73.	b	74.	а	75.	b	76.	d	77.	d	78.	а	79.	b	80.	а
81.	С	82.	b	83.	С	84.	d	85.	С	86.	d	87.	d	88.	d	89.	b	90.	а
91.	а	92.	b	93.	b	94.	d	95.	С	96.	С	97.	b	98.	а	99.	а	100.	b
101.	d	102.	С	103.	а	104.	а	105.	С	106.	b	107.	С	108.	С	109.	С	110.	d
111.	d	112.	а	113.	d	114.	b	115.	а	116.	а	117.	b	118.	d	119.	С	120.	b

impetus

The Catalyst of Your Ambition

_																			
ANSV	ANSWER KEY: NIMCET-2021-ACTUAL PAPER																		
1.	d	2.	b	3.	С	4.	d	5.	С	6.	b	7.	d	8.	b	9.	а	10.	b
11.	С	12.	а	13.	а	14.	b	15.	С	16.	а	17.	b	18.	С	19.	а	20.	С
21.	а	22.	С	23.	d	24.	С	25.	b	26.	а	27.	d	28.	b	29.	С	30.	С
31.	d	32.	b	33.	b	34.	b	35.	b	36.	d	37.	а	38.	b	39.	С	40.	d
41.	С	42.	С	43.	d	44.	b	45.	d	46.	а	47.	а	48.	С	49.	b	50.	b
51.	b	52.	а	53.	b	54.	b	55.	С	56.	d	57.	С	58.	b	59.	d	60.	b
61.	d	62.	С	63.	С	64.	С	65.	b	66.	b	67.	d	68.	С	69.	С	70.	С
71.	d	72.	b	73.	b	74.	а	75.	b	76.	d	77.	d	78.	а	79.	b	80.	а
81.	С	82.	b	83.	С	84.	d	85.	С	86.	d	87.	d	88.	d	89.	b	90.	а
91.	а	92.	b	93.	b	94.	d	95.	С	96.	С	97.	b	98.	а	99.	а	100.	b
101.	d	102.	С	103.	а	104.	а	105.	С	106.	b	107.	С	108.	С	109.	С	110.	d
111.	d	112.	а	113.	d	114.	b	115.	а	116.	а	117.	b	118.	d	119.	С	120.	b
								100											

NIMCET-2021

impetus

The Catalyst of Your Ambition

ANSV	VER K	EY: NIM	ICET-2	2021-A	CTUAI	PAPE	R												
1.	d	2.	b	3.	С	4.	d	5.	С	6.	b	7.	d	8.	b	9.	а	10.	b
11.	С	12.	а	13.	а	14.	b	15.	С	16.	а	17.	b	18.	С	19.	а	20.	С
21.	а	22.	С	23.	d	24.	С	25.	b	26.	а	27.	d	28.	b	29.	С	30.	С
31.	d	32.	b	33.	b	34.	b	35.	b	36.	d	37.	а	38.	b	39.	С	40.	d
41.	С	42.	С	43.	d	44.	b	45.	d	46.	а	47.	а	48.	С	49.	b	50.	b
51.	b	52.	а	53.	b	54.	b	55.	С	56.	d	57.	С	58.	b	59.	d	60.	b
61.	d	62.	С	63.	С	64.	С	65.	b	66.	b	67.	d	68.	С	69.	С	70.	С
71.	d	72.	b	73.	b	74.	а	75.	b	76.	d	77.	d	78.	а	79.	b	80.	а
81.	С	82.	b	83.	С	84.	d	85.	С	86.	d	87.	d	88.	d	89.	b	90.	а
91.	а	92.	b	93.	b	94.	d	95.	С	96.	С	97.	b	98.	а	99.	а	100.	b
101.	d	102.	С	103.	а	104.	а	105.	С	106.	b	107.	С	108.	С	109.	С	110.	d
111.	d	112.	а	113.	d	114.	b	115.	а	116.	а	117.	b	118.	d	119.	С	120.	b