impetus

The Catalyst of Your Ambition

If the normal at an end of latus rectum of an ellipse

MATHEMATICS

11.

4	Let $\theta = \theta$ and $A = [\cos\theta - \sin\theta]$ if $B = A + A^{4}$ then det		passes through an extremity of the minor axis, the eccentricity e of the ellipse satisfies :
1.	Let $\theta = \frac{1}{5}$ and $A = \begin{bmatrix} -\sin\theta & \cos\theta \end{bmatrix}$. If $B = A + A$, then det		(a) $e^4 + 2e^2 - 1 = 0$ (b) $e^2 + e - 1 = 0$
	(D) . (a) is zero (b) is one		(c) $e^2 + 2e - 1 = 0$ (d) $e^4 + e^2 - 1 = 0$
	(c) lies in $(2, 3)$ (d) lies in $(1, 2)$	12.	Let $f: R \to R$ be a function defined by $f(x) = \max \{x, x^2\}$.
2.	The area (in sq. units) of the region enclosed by the		Let S denote the set of all points in R, where f is not
	curves $y = x^2 - 1$ and $y = 1 - x^2$ is equal to :		differentiable. Then :
	(a) $\frac{8}{2}$ (b) $\frac{7}{2}$		(a) $\varphi(an empty set)$ (b) {1}
	(c) $\frac{4}{4}$ (d) $\frac{16}{16}$	13.	The set of all real values λ for which the function $f(x) =$
3	$\left(\begin{array}{c} 0 \end{array} \right)_{3}$		$(1 - \cos^2 x)$, $(\lambda + \sin x)$, $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, has exactly one
0.	intercepts as 3 respectively. Then the image of the point		maxima and exactly one minima, is :
	(-1, -4) in the line is		(a) $\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \{0\}$ (b) $\begin{pmatrix} -\frac{3}{2} & \frac{3}{2} \end{pmatrix}$
	(a) $\left(\frac{8}{r}, \frac{29}{r}\right)$ (b) $\left(\frac{11}{r}, \frac{28}{r}\right)$		(a) $\left(-\frac{1}{2},\frac{1}{2}\right) = \{0\}$ (b) $\left(-\frac{1}{2},\frac{1}{2}\right)$
	$(c) \begin{pmatrix} 29 & 8 \\ 29 & 8 \end{pmatrix}$ $(d) \begin{pmatrix} 29 & 11 \\ 29 & 11 \end{pmatrix}$		(c) $\left(-\frac{1}{2},\frac{1}{2}\right)$ (d) $\left(-\frac{3}{2},\frac{3}{2}\right) - \{0\}$
	(c) $\left(\frac{1}{5}, \frac{1}{5}\right)$ (d) $\left(\frac{1}{5}, \frac{1}{5}\right)$	14.	Consider the statement: "For an integer n, if $n^3 - 1$ is even
4.	If α and β are the roots of the equation $2x(2x + 1) = 1$, then β is equal to :		, then n is odd". The contrapositive statement of this
	(a) $2\alpha(\alpha - 1)$ (b) $2\alpha(\alpha + 1)$		statement is :
	(c) $2\alpha^2$ (d) $-2\alpha(\alpha + 1)$		(a) For an integer n, if n is even, then $n^3 - 1$ is odd
5.	For a suitably chosen real constant a, let a function $f: R$ –		(b) For an integer n, if n is even, then $n^3 - 1$ is even.
	$\{-a\} \rightarrow R$ be defined by $f(x) = \frac{a-x}{a+x}$. Further suppose that		(c) For an integer n, if $n^3 - 1$ is not even, then n is not odd
	for any real number $x \neq -a$ and $f(x) \neq -a$, (fof)(x) = x.		(d) For an integer n, if n is odd, then $n^3 - 1$ is even.
	Then $f\left(-\frac{1}{2}\right)$ is equal to :	15.	The centre of the circle passing through the point $(0, 1)$
	(a) 3 (b) –3		and touching the parabola $y = x^2$ at the point (2, 4) is:
	(c) $\frac{1}{2}$ (d) $-\frac{1}{2}$		(a) $\left(\frac{1}{10}, \frac{1}{5}\right)$ (b) $\left(\frac{1}{10}, \frac{1}{5}\right)$
6.	If the tangent to the curve $y = f(x) = x \log_{2} x$ (x>0) at a		(c) $\left(\frac{-16}{5}, \frac{53}{10}\right)$ (d) $\left(\frac{6}{5}, \frac{53}{10}\right)$
•	point (c, $f(c)$) is parallel to the line-segment joining the	16.	If $y = (\frac{2}{x} - 1) cosec x$ is the solution of the differential
	points (1, 0) and (e, e), then c is equal to :		equation $\frac{dy}{dx} + n(x)y = \frac{2}{c}\cos c x 0 < x < \frac{\pi}{dx}$ then the
	(a) $\frac{e^{-1}}{e^{-1}}$ (b) $\frac{1}{e^{-1}}$ (c) $e^{\left(\frac{1}{e^{-1}}\right)}$ (d) $e^{\left(\frac{1}{1-e^{-1}}\right)}$		function $p(x)$ is equal to :
7.	If the constant term in the binomial expansion of		(a) tan x (b) cosec x
	$\left(\sqrt{r}-\frac{k}{2}\right)^{10}$ is 405 then $ k $ equals :		(c) cot x (d) sec x
	$\begin{pmatrix} \sqrt{x} \\ x^2 \end{pmatrix}$ is 400, then he equals .	17.	Let $z = x + iy$ be a non-zero complex number such that
8	The probabilities of three events A B and C are given		$z^2 = i z ^2$, where $i = \sqrt{-1}$, then z lies on the
0.	$P(A) = 0.6, P(B) = 0.4$ and $P(C) = 0.5.$ If $P(A \cup B) =$		(a) real axis (b) line, $y = x$
	$0.8, P(A \cap C) = 0.3, P(A \cap B \cap C) = 0.2, P(B \cap C) = \beta$ and	10	(c) line, $y = -x$ (d) imaginary axis
	$P(A \cup B \cup C) = \alpha$, where $0.85 \le \alpha \le 0.95$, then β lies in the interval	10.	respectively. The centroid of ABC is given to be (1, 1, 2)
	(a) [0.36, 0.40] (b) [0.35, 0.36]		Then the equation of the line through this centroid and
	(c) $[0.25, 0.35]$ (d) $[0.20, 0.25]$		perpendicular to the plane P is :
9.	The integral $\int_{-\infty}^{\infty} e^x x^2(2 + \log_2 x) dx$ equals :		(a) $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{1}$ (b) $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$
•••	(a) $e(2e - 1)$ (b) $e(4e + 1)$		(c) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$ (d) $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$
	(a) $e(2e^{-1})$ (b) $e(4e^{-1})$	19.	The angle of elevation of the summit of a mountain from a
10	The common difference of the AP $h_c h_b = h_c$ is 2		point on the ground is 45°. After climbing up one km
10.	more than common difference of A.P. a_1, a_2, \dots, a_n . If		towards the summit at an inclination of 30° from the
	$a_{40} = -159$, $a_{100} = -399$ and $b_{100} = a_{70}$, then b_1 is equal		60°. Then the height (in km) of the summit from the
	to:		ground is
	(a) 127 (b) 81 (c) -127 (d) -81		(a) $\frac{\sqrt{3}+1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{\sqrt{3}-1}{2}$
			$\sqrt{3-1}$ $\sqrt{3+1}$ $\sqrt{3-1}$ $\sqrt{3}+1$

impetus

20. For all twice differentiable functions $f : R \to R$, with f(0) = f(1) = f'(0) = 0, (a) f''(x) = 0, for some x ε (0, 1) (b) f''(x) = 0, at every point x ε (0, 1) (c) f''(0) = 0

(d) f''(x) \neq 0, at every point x ε (0, 1)

- **21.** The number of words (with or without meaning) that can be formed from all the letters of the word "LETTER" in which vowels never come together is
- **22.** Consider the data on x taking the values 0, 2, 4, 8, ..., 2^n with frequencies ${}^{n}C_0$, ${}^{n}C_1$, ${}^{n}C_2$,, ${}^{n}C_n$ respectively. If the mean of this data is $\frac{728}{2^n}$, then n is equal to
- **23.** Suppose that a function $f : R \to R$ satisfies f(x + y) = f(x) f(y) for all x, y ε R and f(1) = 3. If $\sum_{i=1}^{n} f(i) = 363$, then n is equal to
- **24.** If \vec{x} and \vec{y} be two non-zero vectors such that $|\vec{x} + \vec{y}| = |\vec{x}|$ and $2\vec{x} + \lambda\vec{y}$ is perpendicular to \vec{y} , then the value of λ is
- **25.** The sum of distinct values of I for which the system of equations :

 $(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$ $(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0$ $2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0$, Has non-zero solutions, is

18, Zone-II, M.P. Nagar, Bhopal 🖀 : 0755-4295319

ANSWER

1.	(d)	2.	(a)	3.	(b)	4.	(d)	5.	(a)	6.	(c)	7.	(a)	8.	(c)	9.	(d)	10.	(d)
11.	(d)	12.	(d)	13.	(d)	14.	(a)	15.	(C)	16.	(c)	17.	(b)	18.	(d)	19.	(c)	20.	(a)
21. (120)	22.	(6)	23.	(5)	24.	(1)	25.	(3)										