impetus

MATHEMATICS

8

		0.	
1.	Let $f:(0,\infty) \to (0,\infty)$ be a differentiable function such that $\lim_{t \to t^2} t^2(x) = x^2 t^2(t)$		
	$f(1) = e \text{ and } \frac{t m}{t \to x} \frac{(x) - x}{t - x} = 0.$ If $f(x) = 1$, then x is		(a) continu
	equal to :		(D) DOIN C
	(a) $\frac{1}{a}$ (b) 2e		(d) continu
	$\left(c \right) \frac{1}{2}$ (d) e	9	Suppose t
n	$(0)_{2e}$	0.	system of
Ζ.	'If a function f is differentiable at a then it is also		the right s
	continuous at a', is :		[1]
	(a) If a function f is not continuous at a, then it is not		$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	differentiable at a.		[]]
	(b) If a function f is continuous at a, then it is differentiable		and $b_3 =$
	at a.		
	(c) If a function f is not continuous at a. then it is		
	(d) If a function f is continuous at a then it is not		(a) $\frac{3}{2}$
	differentiable at a.		(C) $\frac{1}{2}$
3	The solution of the differential equation $\frac{dy}{dy} = \frac{y+3x}{dy} + \frac{y+3x}{dy}$	10.	Let a_1, a_2
•	$dx = \log_e(y+3x)$		difference
	(3) = 0 is (where C is a constant of integration) (a) $x = 2\log_2(y \pm 3x) = 0$		$a_1 = 1, a_1$
	(a) $x = 2i \partial g_e (y + 3x) = 0$ (b) $x - log_e (y + 3x) = 0$		(S_{n-4}, a_{n-4})
	$(c) y + 3x - \frac{1}{2}(\log x)^2 = 0$		(a) $(2+30)$
	$(0) y + 5x^{2} (10y_{e}x) = 0$	11.	let 11 ⁵⁰ .
	(d) $y - \frac{\pi}{2} (log_e(y + 3x)^2) = C$		elements
4.	If for some positive integer n, the coefficients of three		element c
	consecutive terms in the binomial expansion of $(1 + x)^{n+3}$ are in the ratio 5 : 10 : 14, then the largest coefficient in		X_i 's and e
	the expansion is :		(a) 45
	(a) 330 (b) 252	12	(C) 30 The area
	(c) 792 (d) 462	12.	whose ve
5.	The circle passing through the intersection of the circles,		and D lie
	$x^2 + y^2 - 6x = 0$ and $x^2 + y^2 - 4y = 0$, having its centre		(a) $\frac{1}{a\sqrt{a}}$
	on the line, $2x - 3y + 12 = 0$, also passes through the point :		$(c) \frac{4}{3\sqrt{3}}$
	(a) (1, -3) (b) (-1, 3)		$(0) \frac{1}{3\sqrt{3}}$
	(c) $(-3, 6)$ (d) $(-3, 1)$	13.	Let $x = 4$
6.	In a game two players A and B take turns in throwing a		origin and
	pair of fair dice starting with player A and total of scores		this ellipse
	on the two dice, in each throw is noted. A wins the game if		(a) $7x - 4$
	wins the game if he throws a total of 7 before A throws a	14	(C) ox – Z The distar
	total of six. The game stops as soon as either of the		= 5 measi
	players wins. The probability of A winning the game is :		
	(a) $\frac{30}{61}$ (b) $\frac{5}{6}$ (c) $\frac{5}{21}$ (d) $\frac{31}{61}$		(a) _ 7
7.	The angle of elevation of a cloud C from a point P, 200 m		(c) 1
	above a still take is 30°. If the angle of depression of the	15.	If the per
	image of C in the lake from the point P is 60°, then PC (in		the points
			then a val
	(a) 100 (b) 400√3 (c) 200√3 (d) 400		(a) √15
		1	(c) -2

The function
$$f(x) = \begin{cases} \frac{\pi}{4} + tan^{-1}x, & |x| \le 1\\ \frac{1}{2}(|x| - 1), & |x| > 1 \end{cases}$$
 is :

uous on $R - \{-1\}$ and differentiable on $R - \{-1, 1\}$ ontinuous and differentiable on R -{-1} ontinuous and differentiable on R -{1} uous on $R - \{1\}$ and differentiable on $R - \{-1, 1\}$ the vectors x_1, x_2 and x_3 are the solutions of the linear equations, Ax = b when the vector b on side is equal to b_1, b_2 and b_3 respectively. If $x_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, b_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ 0, then the determinant of A is equal of A is (b) 4 (d) 2 a_n, \dots, a_n be a given A.P. whose common is an integer and $S_n = a_1 + a_2 + \dots + a_n$. If = 300 and $15 \le n \le 50$, then the ordered pair 4) is equal to : 248) (b) (2490, 249) 249) (d) (2480, 248) $X = \bigcup_{i=1}^{n} Y_i = T$, where each X_i contains 10 and each Y_i contains 5 elements. If each of the set T is an element of exactly 20 of sets exactly 6 of sets Y_i 's then n is equal to : (b) 15 (d) 50 (in sq. units) of the largest rectangle ABCD ertices A and B lie on the x-axis and vertices C on the parabola, $y = x^2 - 1$ below the x-axis is : (b) $\frac{1}{3}$ (d) $\frac{2}{3\sqrt{3}}$ be a directrix to an ellipse whose centre is at the its eccentricity is $\frac{1}{2}$. If $P(1,\beta), \beta > 0$ is a point on e. Then the equation of the normal to it at P is y = 1(b) 4x - 2y = 1(d) 4x - 3y = 2y = 5nce of the point (1,-2, 3) from the plane x - y + zured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ is : (b) 7 (d) $\frac{7}{5}$

15. If the perpendicular bisector of the line segment joining the points P(1, 4) and Q(k, 3) has y-intercept equal to -4, then a value of k is

(a) √15	(b) –4
(c) –2	(d) $\sqrt{14}$

impetus

16. The integral $\int_{\pi}^{3} tan^{3}x \cdot sin^{2}3x (2sec^{2}xsin^{2}3x + 3tanx sin 6x) dx$ is equal to: (a) $-\frac{1}{9}$ (c) $-\frac{1}{18}$ (b) $\frac{9}{2}$ (d) $\frac{\frac{7}{7}}{18}$ The minimum value of $2^{sinx} + 2^{cosx}$ is : 17. (a) $2^{-1+\frac{1}{\sqrt{2}}}$ (b) $2^{-1+\sqrt{2}}$ (c) $2^{1-\sqrt{2}}$ (d) $2^{1-\frac{1}{\sqrt{2}}}$ If a and b are real numbers such that $(2 + \alpha)^4 = a + b\alpha$, 18. where $\alpha = \frac{-1+i\sqrt{3}}{2}$ then a + b is equal to : (a) 33 (b) 24 (c) 9 (d) 57 19. Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation, $x^2 - x + 2\lambda = 0$ and α and γ are the roots the equation, $3x^2 - 10x + 27\lambda = 0$, then $\frac{\beta\gamma}{\lambda}$ is equal to : (b) 36 (a) 27 (d) 18 (c) 9 20. If the system of equations x + y + z = 22x + 4y - z = 6 $3x + 2y + \lambda z = \mu$ (a) $\lambda + 2\mu = 14$ (b) $2\lambda - \mu = 5$ (d) $\lambda - 2\mu = -5$ (c) $2\lambda + \mu = 14$ Let PQ be a diameter of the circle $x^2 + y^2 = 9$. If α and β 21. are the lengths of the perpendiculars from P and Q on the straight line, x + y = 2 respectively, then the maximum value of $\alpha\beta$ is 22. If the variance of the following frequency distribution : 20-30 30-40 Class : 10–20 Frequency: 2 х 2 Is 50, then x is equal to A test consists of 6 multiple choice questions, each 23.

- having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is
- **24.** Let {x} and [x] denote the fractional part of x and the greatest integer $\leq x$ respectively of a real number x. if $\int_0^n \{x\} dx, \int_0^n [x] dx$ and $10(n^2 n), (n \in N, n > 1)$ are three consecutive terms of a G.P. then n is equal to
- **25.** If $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$, then the value of $|\hat{\imath} \times (\vec{a} \times \hat{\imath})|^2 + |\hat{\imath}(\vec{a} \times \hat{\jmath})|^2 + |\hat{k} \times (\vec{a} \times \hat{k})|^2$ is equal to :

ANSWER

1.	(a)	2. (a)	3. (d)	4. (d)	5. (c)	6. (a)	7. (d)	8. (d)	9. (d)	10. (a)
11.	(c)	12. (c)	13. (b)	14. (c)	15. (b)	16. (c)	17. (d)	18. (c)	19. (d)	20. (c)
21.	(7)	22. (4)	23. (135)	24. (21)	25. (18)					