MATHPMATICS

1. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a differentiable function such that $\mathrm{f}(1)=\mathrm{e}$ and $\lim _{t \rightarrow x} \frac{t^{2} f^{2}(x)-x^{2} f^{2}(t)}{t-x}=0$. If $\mathrm{f}(\mathrm{x})=1$, then x is equal to :
(a) $\frac{1}{e}$
(b) $2 e$
(c) $\frac{1}{2 e}$
(d) e
2. Contrapositive o the statement :
'If a function f is differentiable at a, then it is also continuous at a', is :
(a) If a function f is not continuous at a, then it is not differentiable at a.
(b) If a function f is continuous at a, then it is differentiable at a.
(c) If a function f is not continuous at a. then it is differentiable at a.
(d) If a function f is continuous at a, then it is not differentiable at a.
3. The solution of the differential equation $\frac{d y}{d x}-\frac{y+3 x}{\log _{e}(y+3 x)}+$ $3=0$ is (where C is a constant of integration)
(a) $x-2 \log _{e}(y+3 x)=C$
(b) $x-\log _{e}(y+3 x)=C$
(c) $y+3 x-\frac{1}{2}\left(\log _{e} x\right)^{2}=C$
(d) $y-\frac{1}{2}\left(\log _{e}(y+3 x)^{2}=C\right.$
4. If for some positive integer n , the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+5}$ are in the ratio $5: 10: 14$, then the largest coefficient in the expansion is :
(a) 330
(b) 252
(c) 792
(d) 462
5. The circle passing through the intersection of the circles, $x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}-4 y=0$, having its centre on the line, $2 x-3 y+12=0$, also passes through the point :
(a) $(1,-3)$
(b) $(-1,3)$
(c) $(-3,6)$
(d) $(-3,1)$
6. In a game two players A and B take turns in throwing a pair of fair dice starting with player A and total of scores on the two dice, in each throw is noted. A wins the game if he throws a total of 6 before B throws a total of 7 and B wins the game if he throws a total of 7 before A throws a total of six. The game stops as soon as either of the players wins. The probability of A winning the game is :
(a) $\frac{30}{61}$
(b) $\frac{5}{6}$
(c) $\frac{5}{31}$
(d) $\frac{31}{61}$
7. The angle of elevation of a cloud C from a point $P, 200 \mathrm{~m}$ above a still take is 30°. If the angle of depression of the image of C in the lake from the point P is 60°, then $P C$ (in m) is equal to
(a) 100
(b) $400 \sqrt{3}$
(c) $200 \sqrt{3}$
(d) 400
8. The function $f(x)=\left\{\begin{array}{ll}\frac{\pi}{4}+\tan ^{-1} x, & |x| \leq 1 \\ \frac{1}{2}(|x|-1), & |x|>1\end{array}\right.$ is :
(a) continuous on $\mathrm{R}-\{-1\}$ and differentiable on $\mathrm{R}-\{-1,1\}$
(b) both continuous and differentiable on $R-\{-1\}$
(c) both continuous and differentiable on $R\{1\}$
(d) continuous on $\mathrm{R}-\{1\}$ and differentiable on $\mathrm{R}-\{-1,1\}$
9. Suppose the vectors x_{1}, x_{2} and x_{3} are the solutions of the system of linear equations, $\mathrm{Ax}=\mathrm{b}$ when the vector b on the right side is equal to b_{1}, b_{2} and b_{3} respectively. If
$x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right], x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], b_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], b_{2}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$
and $b_{3}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$, then the determinant of A is equal of A is equal to
(a) $\frac{3}{2}$
(b) 4
(c) $\frac{1}{2}$
(d) 2
10. Let $a_{1}, a_{2}, \ldots \ldots a_{n}$ be a given A.P. whose common difference is an integer and $S_{n}=a_{1}+a_{2}+\ldots .+a_{n}$. If $a_{1}=1, a_{1}=300$ and $15 \leq n \leq 50$, then the ordered pair $\left(S_{n-4}, a_{n-4}\right)$ is equal to :
(a) $(2490,248)$
(b) $(2490,249)$
(c) $(2480,249)$
(d) $(2480,248)$
11. Let $\cup_{i=1}^{50} X=\cup_{i=1}^{n} Y_{i}=T$, where each X_{i} contains 10 elements and each Y_{i} contains 5 elements. If each element of the set T is an element of exactly 20 of sets $X_{i}{ }^{\prime} s$ and exactly 6 of sets $Y_{i}^{\prime} s$ then n is equal to :
(a) 45
(b) 15
(c) 30
(d) 50
12. The area (in sq. units) of the largest rectangle $A B C D$ whose vertices A and B lie on the x-axis and vertices C and D lie on the parabola, $y=x^{2}-1$ below the x -axis is :
(a) $\frac{1}{3 \sqrt{3}}$
(b) $\frac{4}{3}$
(c) $\frac{4}{3 \sqrt{3}}$
(d) $\frac{2}{3 \sqrt{3}}$
13. Let $x=4$ be a directrix to an ellipse whose centre is at the origin and its eccentricity is $\frac{1}{2}$. If $P(1, \beta), \beta>0$ is a point on this ellipse. Then the equation of the normal to it at P is
(a) $7 x-4 y=1$
(b) $4 x-2 y=1$
(c) $8 x-2 y=5$
(d) $4 x-3 y=2$
14. The distance of the point $(1,-2,3)$ from the plane $x-y+z$ $=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ is :
(a) $\frac{1}{7}$
(b) 7
(c) 1
(d) $\frac{7}{5}$
15. If the perpendicular bisector of the line segment joining the points $P(1,4)$ and $Q(k, 3)$ has y-intercept equal to -4 , then a value of k is
(a) $\sqrt{15}$
(b) -4
(c) -2
(d) $\sqrt{14}$
16. The integral
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan ^{3} x \cdot \sin ^{2} 3 x\left(2 \sec ^{2} x \sin ^{2} 3 x+3 \tan x \sin 6 x\right) d x$ is equal to :
(a) $-\frac{1}{9}$
(b) $\frac{9}{2}$
(c) $-\frac{1}{18}$
(d) $\frac{7}{18}$
17. The minimum value of $2^{\sin x}+2^{\cos x}$ is:
(a) $2^{-1+\frac{1}{\sqrt{2}}}$
(b) $2^{-1+\sqrt{2}}$
(c) $2^{1-\sqrt{2}}$
(d) $2^{1-\frac{1}{\sqrt{2}}}$
18. If a and b are real numbers such that $(2+\alpha)^{4}=a+b \alpha$, where $\alpha=\frac{-1+i \sqrt{3}}{2}$ then $\mathrm{a}+\mathrm{b}$ is equal to :
(a) 33
(b) 24
(c) 9
(d) 57
19. Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation, $x^{2}-x+2 \lambda=0$ and α and γ are the roots the equation, $3 x^{2}-10 x+27 \lambda=0$, then $\frac{\beta \gamma}{\lambda}$ is equal to:
(a) 27
(b) 36
(c) 9
(d) 18
20. If the system of equations
$x+y+z=2$
$2 x+4 y-z=6$
$3 \mathrm{x}+2 \mathrm{y}+\lambda z=\mu$
(a) $\lambda+2 \mu=14$
(b) $2 \lambda-\mu=5$
(c) $2 \lambda+\mu=14$
(d) $\lambda-2 \mu=-5$
21. Let PQ be a diameter of the circle $x^{2}+y^{2}=9$. If α and β are the lengths of the perpendiculars from P and Q on the straight line, $x+y=2$ respectively, then the maximum value of $\alpha \beta$ is \qquad
22. If the variance of the following frequency distribution :
Class: 10-20
20-30 30-40

Frequency : 2
x
Is 50 , then x is equal to . \qquad
23. A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is \qquad
24. Let $\{x\}$ and $[x]$ denote the fractional part of x and the greatest integer $\leq x$ respectively of a real number x. if $\int_{0}^{n}\{x\} d x, \int_{0}^{n}[x] d x$ and $10\left(n^{2}-n\right),(n \in N, n>1)$ are three consecutive terms of a G.P. then n is equal to
25. If $\vec{a}=2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$, then the value of $|\hat{\imath} \times(\vec{a} \times \hat{\imath})|^{2}+$ $|\hat{\jmath}(\vec{a} \times \hat{\jmath})|^{2}+|\hat{k} \times(\vec{a} \times \hat{k})|^{2}$ is equal to :

ANSWER

1. (a)
2. (a)
3. (d)
4. (d)
5. (c)
6. (a)
7. (d)
8. (d)
9. (d)
10. (a)
11. (c)
12. (c)
13. (b)
14. (c)
15. (b)
16. (c)
17. (d)
18. (c)
19. (d)
20. (c)
21. (7)
22. (4) 23. (135)
23. (21)
24. (18)
