Your Ambition

MATHPMATICS

1. Let A be a 3×3 matrix such that
$\operatorname{adj} A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1\end{array}\right]$ and $B=\operatorname{adj}(\operatorname{adj} A)$.
If $|A|=\lambda$ and $\left|\left(B^{-1}\right)^{T}\right|=\mu$, then the ordered pair, $(|\lambda|, \mu)$ is equal to
(a) $\left(3, \frac{1}{81}\right)$
(b) $\left(9, \frac{1}{9}\right)$
(c) $(3,81)$
(d) $\left(9, \frac{1}{81}\right)$
2. If $x^{3} d y+x y . d x=x^{2} d y+2 y d x ; y(2)=e$ and $x>1$, then $y(4)$ is equal to :
(a) $\frac{\sqrt{e}}{2}$
(b) $\frac{1}{2}+\sqrt{e}$
(c) $\frac{3}{2} \sqrt{e}$
(d) $\frac{3}{2}+\sqrt{e}$
3. If the sum of the series $20+19 \frac{3}{5}+19 \cdot \frac{1}{5}+18 \frac{4}{5}+\ldots \ldots$. upto $n^{\text {th }}$ term is 488 and the $\mathrm{n}^{\text {th }}$ term is negative, then :
(a) $\mathrm{n}^{\text {th }}$ term is $-4 \frac{2}{5}$
(b) $n=41$
(c) $\mathrm{n}^{\text {th }}$ term is -4
(d) $n=60$
4. The set of all real values of λ for which the quadratic equation $\left(\lambda^{2}+1\right) x^{2}-4 \lambda x+2=0$ always have exactly one root in the interval $(0,1)$ is :
(a) $(-3,-1)$
(b) $(0,2)$
(c) $(1,3]$
(d) $(2,4]$
5. Let R_{1} and R_{2} be two relations defined as follows :
$R_{1}=\left\{(a, b) \in R^{2}: a^{2}+b^{2} \in Q\right\}$ and
$R_{2}=\left\{(a, b) \in R^{2}: a^{2}+b^{2} \notin Q\right\}$,
Where Q is the set of all rational numbers, then
(a) R_{1} is transitive but R_{2} is not transitive.
(b) R_{2} is transitive but R_{1} is not transitive.
(c) Neither R_{1} nor R_{2} is transitive.
(d) R_{1} and R_{2} are both transitive.
6. The Plane which bisects the line joining the points (4, -2 , 3) and (2, 4, -1) at right angles also passes through the point :
(a) $(0,-1,1)$
(b) $(4,0,-1)$
(c) $(4,0,1)$
(d) $(0,1,-1)$
7. Let p, q, r be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim q \vee r)$ is F . Then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively
(a) T, T, F
(b) T, T, T
(c) T, F, T
(d) F, T, F
8. If a $\triangle A B C$ has vertices $\mathrm{A}(-1,7), \mathrm{B}(-7,1)$ and $\mathrm{C}(5,-5)$, then its orthocenter has coordinates :
(a) $(-3,3)$
(b) $(3,-3)$
(c) $\left(-\frac{3}{5}, \frac{3}{5}\right)$
(d) $\left(\frac{3}{5},-\frac{3}{5}\right)$
9. Suppose $f(x)$ is a polynomial of degree four, having critical points at $-1,0$, 1 . If $T=\{x \in R \mid f(x)=f(0)\}$, then the sum of squares of all the elements of T is :
(a) 4
(b) 6
(c) 2
(d) 8
10. If the term independent of x in the expansion of $\left(\frac{3}{2} x^{2}-\right.$ $\left.\frac{1}{3 x}\right)^{9}$ is k, then 18 k is equal to
(a) 11
(b) 5
(c) 9
(d) 7
11. If z_{1}, z_{2} are complex numbers such that $\operatorname{Re}\left(z_{1}\right)=\left|z_{1}=1\right|$ and $\operatorname{Re}\left(z_{2}\right)=\left|z_{2}=1\right|$ and $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{6}$, then $\operatorname{Im}\left(z_{1}+z_{2}\right)$ is equal to :
(a) $2 \sqrt{3}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{2}{\sqrt{3}}$
12. Let $x_{i}(1 \leq i \leq 10)$ be ten observation of a random variable X . If $\sum_{i=1}^{10}\left(x_{i}-p\right)=3$ and $\sum_{i=1}^{10}\left(x_{i}-p\right)^{2}=9$ where $0 \neq p \in R$, then the standard deviation of these observations is :
(a) $\frac{4}{5}$
(b) $\sqrt{\frac{3}{5}}$
(c) $\frac{9}{10}$
(d) $\frac{7}{10}$
13. The probability that a randomly chosen 5 -digit number is made from exactly two digits is :
(a) $\frac{135}{10^{4}}$
(b) $\frac{150}{10^{4}}$
(c) $\frac{134}{10^{4}}$
(d) $\frac{121}{10^{4}}$
14. Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ be such that $a^{2}+b^{2}+c^{2}=1$. If $\mathrm{a} \cos \theta=$ $b \cos \left(\theta+\frac{2 \pi}{3}\right)=c \cos \left(\theta+\frac{4 \pi}{3}\right)$, where $\theta=\frac{\pi}{9}$, then the angle between the vectors $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ and $b \hat{\imath}+c \hat{\jmath}+a \hat{k}$ is:
(a) 0
(b) $\frac{2 \pi}{3}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{9}$
15. If the surface area of a cube is increasing at a rate of 3.6 $\mathrm{cm}^{2} / \mathrm{sec}$, retaining its shape; then the rate of change of its volume (in $\mathrm{cm}^{3} / \mathrm{sec}$), when the length of a side of the cube is 10 cm , is
(a) 20
(b) 10
(c) 18
(d) 9
16. $\lim _{x \rightarrow 0} \frac{(a+2 x)^{\frac{1}{3}}-(3 x)^{\frac{1}{3}}}{(3 a+x)^{\frac{1}{3}}-(4 x)^{\frac{1}{3}}}(a \neq 0)$ is equal to :
(a) $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{1 / 3}$
(b) $\left(\frac{2}{3}\right)^{4 / 3}$
(c) $\left(\frac{2}{9}\right)^{4 / 3}$
(d) $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{1 / 3}$

The Catalyst of
Your Ambition $1(b<5)$ and the hyperbola, $\frac{x^{2}}{16}-\frac{y^{2}}{b^{2}}=1$ respectively satisfying $\mathrm{e}_{1} \mathrm{e}_{2}=1$. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to :

(a) $(8,10)$
(b) $\left(\frac{20}{3}, 12\right)$
(c) $(8,12)$
(d) $\left(\frac{24}{5}, 10\right)$
18. If $\int \sin ^{-1} \sqrt{\frac{x}{1+x}} d x=A(x) \tan ^{-1}(\sqrt{x})+B(x)+C$, where C is a constant of integration, then the ordered pair $(A(x)$, $\mathrm{B}(\mathrm{x})$) can be :
(a) $(x-1, \sqrt{x})$
(b) $(x-1,-\sqrt{x})$
(c) $(x+1, \sqrt{x})$
(d) $(x+1,-\sqrt{x})$
19. If the value of the integral $\int_{0}^{1 / 2} \frac{x^{2}}{\left(1-x^{2}\right)^{3 / 2}} d x$ is $\frac{k}{6}$, then k is equal to :
(a) $2 \sqrt{3}+\pi$
(b) $2 \sqrt{3}-\pi$
(c) $3 \sqrt{2}+\pi$
(d) $3 \sqrt{2}-\pi$
20. Let the latus rectum of the parabola $y^{2}=4 x$ be the common chord to the circles C_{1} and C_{2} each of them having radius $2 \sqrt{5}$. Then, the distance between the centres of the circles C_{1} and C_{2} is
(a) 12
(b) 8
(c) $8 \sqrt{5}$
(d) $4 \sqrt{5}$
21. If the tangent to the curve, $y=e^{x}$ at a point ($\mathrm{c}, \mathrm{e}^{\mathrm{c}}$) and the normal to the parabola, $\mathrm{y}^{2}=4 \mathrm{x}$ at the point $(1,2)$ intersect at the same point on the x-axis, then the value of c is \qquad
22. Let a plane P contain two lines
$\vec{r}=\hat{\imath}+\lambda(\hat{\imath}+\hat{\jmath}), \lambda \varepsilon R$ and
$\vec{r}=-\hat{\jmath}+\mu(\hat{\jmath}-\hat{k}), \mu \varepsilon R$
If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from the point $\mathrm{M}(1,0,1)$ to P , then $3(\alpha+\beta+\gamma)$ equals
23. If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that $4^{\text {th }}$ A.M. is equal to $2^{\text {nd }}$ G.M., then m is equal to :
24. The total number of 3 -digit numbers, whose sum of digits is 10 , is
25. Let S be the set of all integer solutions, (x, y, z) of the system of equations
$x-2 y+5 z=0$
$-2 x+4 y+z=0$
$-7 x+14 y+9 z=0$
Such that $15 \leq x^{2}+y^{2}+z^{2} \leq 150$. Then, the number of elements in the set s is equal to

ANSWER

1. (a)
2. (c)
3. (c)
4. (c)
5. (c)
6. (b)
7. (a)
8. (a)
9. (a) 10. (d)
10. (d)
11. (a)
12. (d)
13. (b)
14. (b)
15. (04.00)22. (05.00)23. (39.00)24. (54.00)25. (08.00)
