impetus

The Catalyst of Your Ambition

MATHEMATICS

1.	Let A be a 3 × 3 matrix such that $adj A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix}$ and B = adj (adj A).	9.	Suppose $f(x)$ is a polynomial of degree four, having critical points at -1, 0, 1. If $T = \{x \in R f(x) = f(0)\}$, then the sum of squares of all the elements of T is : (a) 4 (b) 6 (c) 2 (d) 8						
	If $ A = \lambda$ and $ (B^{-1})^T = \mu$, then the ordered pair, (λ , μ) is equal to (a) $\left(3, \frac{1}{81}\right)$ (b) $\left(9, \frac{1}{9}\right)$ (c) $(3, 81)$ (d) $\left(9, \frac{1}{81}\right)$	11.	The term independent of x in the expansion of $\left(\frac{1}{2}x^2 - \frac{1}{3x}\right)^9$ is k, then 18k is equal to (a) 11 (b) 5 (c) 9 (d) 7 If z_1, z_2 are complex numbers such that $\text{Re}(z_1) = z_2 = 1$						
2.	If $x^{3} dy + xy dx = x^{2} dy + 2y dx$; $y(2) = e$ and $x > 1$, then y(4) is equal to : (a) $\frac{\sqrt{e}}{2}$ (b) $\frac{1}{2} + \sqrt{e}$ (c) $\frac{3}{2}\sqrt{e}$ (d) $\frac{3}{2} + \sqrt{e}$		and $\operatorname{Re}(z_2) = z_2 = 1 $ and $\arg(z_1 - z_2) = \frac{\pi}{6}$, then $\operatorname{Im}(z_1 + z_2)$ is equal to : (a) $2\sqrt{3}$ (b) $\frac{\sqrt{3}}{2}$						
3.	If the sum of the series $20 + 19\frac{3}{5} + 19.\frac{1}{5} + 18\frac{4}{5} + \dots$ upto n th term is 488 and the n th term is negative, then : (a) n th term is $-4\frac{2}{5}$ (b) n = 41 (c) n th term is -4 .	12.	(c) $\sqrt{3}$ (d) $\sqrt{3}$ Let $x_i (1 \le i \le 10)$ be ten observation of a random variable X. If $\sum_{i=1}^{10} (x_i - p) = 3$ and $\sum_{i=1}^{10} (x_i - p)^2 = 9$ where $0 \ne p \in R$, then the standard deviation of these observations is :						
4.	The set of all real values of λ for which the quadratic equation $(\lambda^2 + 1)x^2 - 4\lambda x + 2 = 0$ always have exactly one root in the interval (0, 1) is : (a) (-3, -1) (b) (0, 2) (c) (1, 3] (d) (2, 4]	13.	(a) $\frac{4}{5}$ (b) $\sqrt{\frac{3}{5}}$ (c) $\frac{9}{10}$ (d) $\frac{7}{10}$ The probability that a randomly chosen 5-digit number is made from exactly two digits is :						
5.	Let R_1 and R_2 be two relations defined as follows : $R_1 = \{(a, b) \in R^2 : a^2 + b^2 \in Q\}$ and $R_2 = \{(a, b) \in R^2 : a^2 + b^2 \notin Q\}$, Where Q is the set of all rational numbers, then (a) R_1 is transitive but R_2 is not transitive	14.	(a) $\frac{135}{10^4}$ (b) $\frac{150}{10^4}$ (c) $\frac{134}{10^4}$ (d) $\frac{121}{10^4}$ Let a, b, c \in R be such that $a^2 + b^2 + c^2 = 1$. If a $cos\theta = bcos(\theta + \frac{2\pi}{2}) = c cos(\theta + \frac{4\pi}{2})$, where $\theta = \frac{\pi}{2}$, then the						
	(a) R_1 is transitive but R_2 is not transitive. (b) R_2 is transitive but R_1 is not transitive. (c) Neither R_1 nor R_2 is transitive.		angle between the vectors $a\hat{i} + b\hat{j} + c\hat{k}$ and $b\hat{i} + c\hat{j} + a\hat{k}$ is : (a) 0 (b) $\frac{2\pi}{2\pi}$						
6.	(d) R_1 and R_2 are both transitive. The Plane which bisects the line joining the points (4, -2, 3) and (2, 4, -1) at right angles also passes through the point : (a) (0, -1, 1) (b) (4, 0, -1) (c) (4, 0, 1) (d) (0, 1, -1)	15.	(c) $\frac{\pi}{2}$ (d) $\frac{\pi}{9}$ If the surface area of a cube is increasing at a rate of 3.6 cm ² /sec, retaining its shape; then the rate of change of its volume (in cm ³ /sec), when the length of a side of the cube is 10 cm, is						
7.	Let p, q, r be three statements such that the truth value of $(p \land q) \rightarrow (\sim q \lor r)$ is F. Then the truth values of p, q, r are respectively (a) T, T, F (b) T, T, T (c) T, F, T (d) F, T, F	16.	(a) 20 (b) 10 (c) 18 (d) 9 $\lim_{x \to 0} \frac{(a+2x)^{\frac{1}{3}} - (3x)^{\frac{1}{3}}}{(3a+x)^{\frac{1}{3}} - (4x)^{\frac{1}{3}}} (a \neq 0) \text{ is equal to :}$						
8.	If a $\triangle ABC$ has vertices A(-1, 7), B (-7, 1) and C (5, -5), then its orthocenter has coordinates : (a) (-3, 3) (b) (3, -3) (c) $\left(-\frac{3}{5}, \frac{3}{5}\right)$ (d) $\left(\frac{3}{5}, -\frac{3}{5}\right)$		(a) $\left(\frac{2}{9}\right) \left(\frac{2}{3}\right)^{1/3}$ (b) $\left(\frac{2}{3}\right)^{4/3}$ (c) $\left(\frac{2}{9}\right)^{4/3}$ (d) $\left(\frac{2}{3}\right) \left(\frac{2}{9}\right)^{1/3}$						

impetus

17.	Let e ₁ and e ₂ be the eccentricities of the ellipse, $\frac{x^2}{25} + \frac{y^2}{h^2} = -\frac{1}{2}$									
	$1(b < 5)$ and the hyperbola, $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$ respecti									
	satisfying $e_1e_2 = 1$. If α and β are the distances betwee									
	the foci of the ellipse and the foci of the hyperbola									
	respectively, then the ordered pair (α, β) is equal to:									
	(a) (8, 10) (b) $\left(\frac{23}{3}, 12\right)$									
	(c) (8, 12) (d) $\left(\frac{24}{5}, 10\right)$									
18.	If $\int \sin^{-1} \sqrt{\frac{x}{1+x}} dx = A(x) \tan^{-1} (\sqrt{x}) + B(x) + C$, where C									
	is a constant of integration, then the ordered pair (A(x), $B(x)$) can be :									
	(a) $(x - 1, \sqrt{x})$ (b) $(x - 1, -\sqrt{x})$									
	(c) $(x + 1, \sqrt{x})$ (d) $(x + 1, -\sqrt{x})$									
19.	If the value of the integral $\int_0^{1/2} \frac{x^2}{(1-x^2)^{3/2}} dx$ is $\frac{k}{6}$, then k is									
	equal to :									
	(a) $2\sqrt{3} + \pi$ (b) $2\sqrt{3} - \pi$									
	(c) $3\sqrt{2} + \pi$ (d) $3\sqrt{2} - \pi$									
20.	Let the latus rectum of the parabola $y^2 = 4x$ be the									
	common chord to the circles C_1 and C_2 each of them having radius $2\sqrt{5}$. Then, the distance between the									
	centres of the circles C_1 and C_2 is									
	(a) 12 (b) 8									
	(c) $8\sqrt{5}$ (d) $4\sqrt{5}$									
21.	If the tangent to the curve, $y = e^x$ at a point (c, e ^c) and									
	the normal to the parabola, $y^2 = 4x$ at the point (1, 2)									
	intersect at the same point on the x-axis, then the value of									
22	uis Let a plane P contain two lines									
<i>LL</i> .	$\vec{r} = \hat{i} + \lambda(\hat{i} + \hat{i}), \lambda \epsilon R$ and									
	$\vec{r} = -\hat{i} + \mu(\hat{j} - \hat{k}), \mu \varepsilon R$									
	If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from									
	the point M(1, 0, 1) to P, then $3(\alpha + \beta + \gamma)$ equals									
23.	If m arithmetic means (A.Ms) and three geometric means									
	is equal to 2^{nd} G.M., then m is equal to :									
24.	The total number of 3-digit numbers, whose sum of digits									
	is 10, is									
25.	Let S be the set of all integer solutions, (x, y, z) of the									
	x - 2y + 5z = 0									
	-2x + 4y + z = 0									
	-7x + 14y + 9z = 0									
	Such that $15 \le x^2 + y^2 + z^2 \le 150$. Then, the number of									
	elements in the set s is equal to									

impetus

	ANSWER																		
1.	(a)	2.	(c)	3.	(c)	4.	(c)	5.	(c)	6.	(b)	7.	(a)	8.	(a)	9.	(a)	10.	(d)
11.	(a)	12.	(c)	13.	(a)	14.	(c)	15.	(d)	16.	(d)	17.	(a)	18.	(d)	19.	(b)	20.	(b)
21.	(04.00) 22.	(05.0	00) 23.	(39.0	0) 24.	(54.0	0) 25.	(08.00)										