impetus

MATHEMATICS

- 1. Let y = y(x) be the solution of the differential equation, $xy' - y = x^2(x\cos x + \sin x), x > 0$. If $y(\pi) = \pi$, then $y''\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2}\right)$ is equal to :
- (c) $2 + \frac{\pi}{2} + \frac{\pi^2}{4}$
- 2. A triangle ABC lying in the first quadrant has two vertices as A(1, 2) and B(3, 1). If $\angle BAC = 90^{\circ}$, and $ar(\triangle ABC) =$ $5\sqrt{5}$ sq. units, then the abscissa of the vertex C is :
- (b) $2 + \sqrt{5}$
- (c) $1 + 2\sqrt{5}$
- (d) $2\sqrt{5} 1$
- Let f(x) = |x 2| and $g(x) = f(f(x)), x \in [0, 4]$. Then 3. $\int_0^3 (g(x) - f(x)) dx$ is equal to :
 - (a) 0

- The integral $\int \left(\frac{x}{xsinx+cosx}\right)^2 dx$ is equal to (where C is a 4. constant of integration):
 - (a) $tanx + \frac{xsecx}{xsinx + cosx} + C$ (b) $tanx \frac{xsecx}{xsinx + cosx} + C$ (c) $secx + \frac{xtanx}{xsinx + cosx} + C$ (d) $secx \frac{xtanx}{xsinx + cosx} + C$ If $1 + (1 2^2 \cdot 1) + (1 4^2 \cdot 3) + (1 6^2 \cdot 5) + \dots + C$
- 5. $(1-20^2.19) = \alpha - 220\beta$ then an ordered pair (α, β) is equal to:
 - (a) (11, 97)
- (b) (10, 103)
- (c) (11, 103)
- (d) (10, 97)
- 6. A survey shows that 63% of the people in a city read newspaper A whereas 76% read news paper B. If x% of the people read both the newspapers, then a possible value of x can be:
 - (a) 65
- (b) 55 (c) 37
- (d) 29
- Two vertical poles AB = 15 m and CD = 10 m are 7. standing apart on a horizontal ground with points A and C on the ground. If P is the point of intersection of BC and AD, then the height of P (in m) above the line AC is:
 - (a) 10/3
- (c) 5
- Let P(3, 3) be a point on the hyperbola, $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. If the 8. normal to it at P intersects the x-axis at (9, 0) and e is its eccentricity, then the ordered pair (a^2, e^2) is equal to :
 - (a) $(\frac{9}{2}, 3)$ (b) $(\frac{3}{2}, 2)$
- (c) (9, 3)
- Let [t] denote the greatest integer $\leq t$. Then the equation 9. in x, $[x]^2 + 2[x+2] - 7 = 0$ has:
 - (a) no integral solution
 - (b) infinitely many solutions

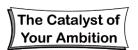
(b) 6

- (c) exactly two solutions
- (d) exactly four integral solutions

- If $(a + \sqrt{2}b\cos x)(a \sqrt{2}b\cos x) = a^2 b^2$, where a > b > 0, then $\frac{dx}{dy}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is: (a) $\frac{2a+b}{2a-b}$ (b) $\frac{a+b}{a-b}$ (c) $\frac{a-b}{a+b}$

- 11. Let x_0 be the point of local maxima of $f(x) = \vec{a} \cdot (\vec{b} \times \vec{c})$, where $\vec{a} = x\hat{\imath} - 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = -2\hat{\imath} + x\hat{\jmath} - \hat{k}$ and
 - $\vec{c} = 7\hat{\imath} 2\hat{\jmath} + x\hat{k}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ at x =
 - (a) -22
- (b) 14
- (d) -30
- Let $f(x) = \int \frac{\sqrt{x}}{(1+x)^2} dx (x \ge 0)$. Then f(3) f(1) is equal to :
 - (a) $-\frac{\pi}{6} + \frac{1}{3} + \frac{\sqrt{3}}{4}$
 - (b) $-\frac{\pi}{12} + \frac{1}{2} + \frac{\sqrt{3}}{4}$
 - (c) $\frac{\pi}{12} + \frac{1}{2} \frac{\sqrt{3}}{4}$ (d) $\frac{\pi}{6} + \frac{1}{2} \frac{\sqrt{3}}{4}$
- 13. The mean and variance of 8 observations are 10 and 13.5, respectively. If 6 of these observations are 5, 7, 10, 12, 14, 15, then the absolute difference of the remaining two observations is:
 - (a) 9
- (b) 5
- (d) 7
- Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b)$ be a given ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function $\phi(t) = \frac{5}{12} + t t^2$ then $a^2 + b^2$ is equal to: 14.
 - (a) 145
- (c) 116
- (d) 135
- 15. Let f be a twice differentiable function on (1, 6). If f(2) = 8. F'(2) = 5, $f'(x) \ge 4$, for all $x \in (1, 6)$, then :
 - (a) $f(5) + f'(5) \ge 28$
- (b) $f'(5) + f''(5) \le 20$
- (c) $f(5) \le 10$
- (d) $f(5) + f'(5) \le 26$
- Let $u = \frac{2z+i}{z-kl}$, z = x + iy and k > 0. If the curve represented by Re (u) + Im(u) = 1 intersects the y-axis at points P and Q where PQ = 5 then the value of k is
 - (a) $\frac{3}{2}$
- (c) 4
- If $A = \begin{bmatrix} cos\theta & isin\theta \\ isin\theta & cos\theta \end{bmatrix}$, $\left(\theta = \frac{\pi}{24}\right)$ and $A^5 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where $i = \frac{\pi}{24}$ $\sqrt{-1}$, then which one of the following is not true ?
 - (a) $0 \le a^2 + b^2 \le 1$ (b) $a^2 d^2 = 0$
 - (c) $a^2 b^2 = \frac{1}{a}$
- (d) $a^2 c^2 = 1$
- Let α and β be the roots of $x^2 3x + p = 0$ and γ and δ 18. be the roots $x^2 - 6x + q = 0$. If $\alpha, \beta, \gamma, \delta$ from a geometric progression. Then ratio (2q + p) : (2q - p) is
 - (a) 3:1
- (b) 5:3
- (c) 9:7
- (d) 33:31

impetus



- **19.** The value of $\sum_{r=0}^{20} C_6^{50-*r}$ is equal to :
 - (a) $^{51}C_7 ^{30}C_7$
- (b) $^{51}C_7 + ^{30}C_7$
- (c) ${}^{50}C_7 {}^{30}C_7$
- (d) ${}^{50}C_6 {}^{30}C_6$
- **20.** Given the following two statements :
 - $(S_1): (q \lor p) \to (p \leftrightarrow \sim q)$ is a tautology.
 - $(S_2): \sim q \land (\sim p \leftrightarrow q)$ is a fallacy. Then :
 - (a) only (S₂) is correct
 - (b) both (S₁) and (S₂) are not correct
 - (c) both (S₁) and (S₂) are correct
 - (d) only (S₁) is correct
- 21. If the equation of a plane P, passing through the intersection of the planes, x + 4y z + 7 = 0 and 3x + y + 5z = 8 is ax + by + 6z = 15 for some a, $b \in R$, then the distance of the point (3, 2, -1) from the plane P is
- **22.** Suppose a differentiable function f(x) satisfies the identity $f(x+y) = f(x) + f(y) + xy^2 + x^2y$, for all real x and y. If $\lim_{x \to 0} \frac{f(x)}{x} = 1$, then f(3) is equal to :
- **23.** The probability of a man hitting a target is $\frac{1}{10}$. The least number of shots required, so that the probability of his hitting the target at least once is greater than $\frac{1}{4}$, is
- **24.** Let $(2x^2 + 3x + 4)^{10} = \sum_{r=0}^{20} a_r x^r$. Then $\frac{a_7}{a_{13}}$ is equal to
- 25. If the system of equations

$$x - 2y + 3z = 9$$

$$2x + y + z = b$$

x - 7y + az = 24, has infinitely many solutions, then a - b is equal to :

impetus

ANSWER

5. (c) **6.** (b) **1.** (d) **2.** (c) **3.** (d) **4.** (b) **7.** (b) **8.** (a) **9.** (b) **10.** (b) **11.** (a) **12.** (c) **13.** (d) **14.** (b) **15.** (a) **16.** (d) **17.** (c) **18.** (c) **19.** (a) **20.** (b) **21.** (3) **22.** (10) **23.** (3) **24.** (8) **25.** (5)