impetus

The Catalyst of **Your Ambition**

MATHEMATICS

14.

15.

1. The sum of the first three terms of a G.P, is S and their product is 27. Then all such S lie in (b) $(-\infty, -9] \cup [3, \infty)$

(a) $(-\infty, -3] \cup [9, \infty)$ (c) [−3,∞) (d) (−∞, 9]

Box I contains 30 cards numbered I to 30 and Box II 2. contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a non-prime number. The probability that the card was drawn from Box I is :

(a) $\frac{2}{3}$ (b) $\frac{2}{5}$ (c) $\frac{8}{17}$ (d) $\frac{4}{17}$

- Area (in sq. units) of the region outside $\frac{|x|}{2} + \frac{|y|}{3} = 1$ and 3. inside the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is
 - (a) $3(\pi 2)$ (b) $3(4 - \pi)$
 - (d) $6(4 \pi)$ (c) $6(\pi - 2)$
- The domain of the function $f(x) = sin^{-1} \left(\frac{|x|+5}{x^2+1} \right)$ is 4. $(-\infty, -a] \cup [a, \infty)$, Then a is equal to :

(a) $\frac{1+\sqrt{17}}{2}$ (b) $\frac{\sqrt{17}-1}{2}$ (c) $\frac{\sqrt{17}}{2}$ (d) $\frac{\sqrt{17}}{2}+1$ If |x| < 1, |y| < 1 and $x \neq y$, then the sum to infinity of the

5. following series $(x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + y^2)$ $xy^2 + y^3) + \dots$ is (x) x+y+xy(b) x+y-xy

(a)
$$\frac{(1-x)(1-y)}{(1-x)(1-y)}$$
 (b) $\frac{(1-x)(1-y)}{(1-x)(1-y)}$
(c) $\frac{x+y-xy}{(1-x)(1+y)}$ (d) $\frac{x+y+xy}{(1+x)(1+y)}$
The value of $\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}\right)^3$ is :

6.

$$(a) -\frac{1}{2}(\sqrt{3} - i) \qquad (b) \frac{1}{2}(\sqrt{3} - i) (c) \frac{1}{2}(1 - i\sqrt{3}) \qquad (d) -\frac{1}{2}(1 - i\sqrt{3})$$

- Let Y = y(x) be the solution of the differential equation, 7. $\frac{2+\sin x}{y+1} \cdot \frac{dy}{dx} = -\cos x, y > 0, y(0) = 1$. If $y(\pi) = a$ and $\frac{dy}{dx}$ at $x = \pi$ is b, then the ordered pair (a, b) is equal to :
 - (a) $\left(2,\frac{3}{2}\right)$ (b) (1, -1)
 - (c) (2, 1) (d) (1, 1)
- 8. The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point :
 - (a) (2, 0, -1) (b) (0, 6, -2) (c) (0, -6, 2) (d) (-2, 0, 1)
- 9. Let $\alpha > 0, \beta > 0$ be such that $\alpha^3 + \beta^2 = 4$. If the maximum value of the term independent of x in the binomial expansion of $(\alpha x^{1/9} + \beta x^{-1/6})$ is 10k, then k is equal to : (b) 336 (a) 176 (c) 352 (d) 84
- If $R = \{(x, y): x, y \in \mathbb{Z}, x^2 + 3y^2 \le 8\}$ is a relation on the 10. set of integers Z, then the domain R^{-1} is (b) {-2, -1, 1, 2} (a) {-1, 0, 1} (c) {0, 1} (d) {-2, -1, 0, 1, 2}
- 11. If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to (a) -24 (b) -12 (c) 6 (d) 12 12. A line parallel to the straight line 2x - y = 0 is tangent to the hyperbola $\frac{x^2}{4} - \frac{y^2}{2} = 1$ at the point (x_1, y_1) . Then x_1^2 + $5y_1^2$ is equal to : (a) 10 (b) 5 (c) 8 (d) 6 13. The contrapositive of the statement "If reach the station in time, then I will catch the train" is : (a) If i will catch the train, then I reach the station in time. (b) If do not reach the station in time, then I will not catch the train. (c) If I do not reach the station in time, then I will catch the train. (d) If I will not catch the train, then I do not reach the station in time Let P(h, k) be a point on the curve $y = x^2 + 7x + 2$, nearest to the line, y = 3x - 3. Then the equation of the normal to the curve at P is : (a) x + 3y - 62 = 0 (b) x + 3y + 26 = 0(c) x - 3y - 11 = 0(d) x - 3y + 22 = 0Let A be a 2×2 real matrix with entries from {0, 1} and |A| \neq 0. Consider the following two statements : (P) If $A \neq I_2$, then |A| = -1(Q) If |A| = 1, then tr(A) = 2 Where I_2 denotes 2×2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then : (a) (P) is true and (Q) are false (b) Both (P) and (Q) are true (c) Both (P) and (Q) are false (d) (P) is false and (Q) are true 16. Let s be the set of all $\lambda \in R$ which the system of linear equations 2x - y + 2z = 2 $x - 2y + \lambda z = -4$ $x + \lambda y + z = 4$ has no solution, then the set S (a) is a singleton (b) contains exactly two elements (c) contains more than two elements (d) is an empty set 17. If the tangent to the curve $y = x + \sin y$ at a point (a, b) is parallel to the line joining $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$, then (a) |b - a| = 1 (b) $b = \frac{\pi}{2} + a$ (c) |a + b| = 1 (d) b = a

impetus

18.	If a function $f(x)$ defined by $ae^{x} + be^{-x}$, $-1 \le x \le 1$											
	$f(x) = cx^2, \qquad 1 \le x \le 1$											
	$ax^{2} + 2cx, 3 < x \le 4$											
	Be continuous for some a, b, $c \in R$ and $f'(0) + f'(2) = e$,											
	then the value of a is :											
	(a) $\frac{1}{e^2 - 3e + 13}$ (b) $\frac{e}{e^2 - 3e + 13}$											
	0 00110											
	(c) $\frac{e}{e^2 - 3e - 13}$ (d) $\frac{e}{e^2 + 3e + 13}$											
19.	Let α and β be the roots of the equation, $5x^2 + 6x - 2 =$											
	0. If $S_n = \alpha^n + \beta^n n n = 1, 2, 3,,$ then :											
	(a) $6S_6 + 5S_5 = 2S_4$ (b) $5S_6 + 6S_5 = 2S_4$											
	(c) $5S_6 + 6S_5 + 2S_4 = 0$ (d) $5S_6 + 5S_5 + 2S_4 = 0$											
20.	Let $X = \{x \in N : 1 \le 1 \le 17\}$ and $Y = \{ax + b : x \in X\}$											
	and $a, b \in R, a > 0$. If mean and variance of elements of											
	Y are 17 and 216 respectively then a + b is equal to :											
	(a) 7 (b) 9											
	(c) –7 (d) –27											
21.	Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $ \vec{a} - \vec{c} ^2 +$											
	$ \vec{a} - \vec{c} ^2 = 8$. Then $ \vec{a} + 2\vec{b} ^2 + \vec{a} + 2\vec{c} ^2$ is equal to											
22.	If $\lim_{x \to 1^{\infty}} \frac{x + x^2 + x^3 + \dots + x^n - n}{n} = 820$, (n \in N) then the value of n											

- 22. If $\frac{um}{x \to 1} \frac{x + x^2 + x^2 + \dots + x^{n-n}}{x^{n-1}} = 820$, $(n \in N)$ then the value of n is equal to
- **23.** The number of integral values of k for which the line, 3x + 4y = k intersects the circle, $x^2 + y^2 2x 4y + 4 = 0$ at two distinct points is
- 24. If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning be listed as in a dictionary, then the position of the word 'MOTHER' is
- **25.** The integral $\int_0^2 ||x-1| 1| dx$ is equal to :

<u>ANSWER</u>

1.	(a)	2.	(c)	3.	(c)	4.	(a)	5.	(b)	6.	(a)	7.	(d)	8.	(d)	9.	(b)	10.	(a)
11.	(b)	12.	(d)	13.	(d)	14.	(b)	15.	(b)	16.	(b)	17.	(a)	18.	(b)	19.	(b)	20.	(C)
21.	(02.00))22.	(40.00)) 23.	(09.00) 24.	(309	9.00) 2	5. (0	01.50)									