MATHPMATICS

1. The sum of the first three terms of a G.P, is S and their product is 27 . Then all such S lie in
(a) $(-\infty,-3] \cup[9, \infty)$
(b) $(-\infty,-9] \cup[3, \infty)$
(c) $[-3, \infty)$
(d) $(-\infty, 9]$
2. Box I contains 30 cards numbered I to 30 and Box II contains 20 cards numbered 31 to 50 . A box is selected at random and a card is drawn from it. The number on the card is found to be a non-prime number. The probability that the card was drawn from Box I is :
(a) $\frac{2}{3}$
(b) $\frac{2}{5}$
(c) $\frac{8}{17}$
(d) $\frac{4}{17}$
3. Area (in sq. units) of the region outside $\frac{|x|}{2}+\frac{|y|}{3}=1$ and inside the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is
(a) $3(\pi-2)$
(b) $3(4-\pi)$
(c) $6(\pi-2)$
(d) $6(4-\pi)$
4. The domain of the function $f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)$ is $(-\infty,-a] \cup[a, \infty)$, Then a is equal to :
(a) $\frac{1+\sqrt{17}}{2}$
(b) $\frac{\sqrt{17}-1}{2}$
(c) $\frac{\sqrt{17}}{2}$
(d) $\frac{\sqrt{17}}{2}+1$
5. If $|\mathrm{x}|<1,|\mathrm{y}|<1$ and $\mathrm{x} \neq \mathrm{y}$, then the sum to infinity of the following series $(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+\right.$ $\left.x y^{2}+y^{3}\right)+\ldots .$. is
(a) $\frac{x+y+x y}{(1-x)(1-y)}$
(b) $\frac{x+y-x y}{(1-x)(1-y)}$
(c) $\frac{x+y-x y}{(1-x)(1+y)}$
(d) $\frac{x+y+x y}{(1+x)(1+y)}$
6. The value of $\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^{3}$ is :
(a) $-\frac{1}{2}(\sqrt{3}-i)$
(b) $\frac{1}{2}(\sqrt{3}-i)$
(c) $\frac{1}{2}(1-i \sqrt{3})$
(d) $-\frac{1}{2}(1-i \sqrt{3})$
7. Let $Y=y(x)$ be the solution of the differential equation, $\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1$. If $y(\pi)=a$ and $\frac{d y}{d x}$ at $x=\pi$ is b , then the ordered pair (a, b) is equal to :
(a) $\left(2, \frac{3}{2}\right)$
(b) $(1,-1)$
(c) $(2,1)$
(d) $(1,1)$
8. The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, $2 x=3 y, z=1$ also passes through the point :
(a) $(2,0,-1)$
(b) $(0,6,-2)$
(c) $(0,-6,2)$
(d) $(-2,0,1)$
9. Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4$. If the maximum value of the term independent of x in the binomial expansion of $\left(\alpha x^{1 / 9}+\beta x^{-1 / 6}\right)$ is 10 k , then k is equal to :
(a) 176
(b) 336
(c) 352
(d) 84
10. If $R=\left\{(x, y): x, y \in Z, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers Z, then the domain R^{-1} is
(a) $\{-1,0,1\}$
(b) $\{-2,-1,1,2\}$
(c) $\{0,1\}$
(d) $\{-2,-1,0,1,2\}$
11. If $p(x)$ be a polynomial of degree three that has a local maximum value 8 at $x=1$ and a local minimum value 4 at $x=2$; then $p(0)$ is equal to
(a) -24
(b) -12
(c) 6
(d) 12
12. A line parallel to the straight line $2 x-y=0$ is tangent to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ at the point $\left(x_{1}, y_{1}\right)$. Then $x_{1}^{2}+$ $5 y_{1}^{2}$ is equal to :
(a) 10
(b) 5
(c) 8
(d) 6
13. The contrapositive of the statement "If reach the station in time, then I will catch the train" is :
(a) If i will catch the train, then I reach the station in time.
(b) If do not reach the station in time, then I will not catch the train.
(c) If I do not reach the station in time, then I will catch the train.
(d) If I will not catch the train, then I do not reach the station in time
14. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a point on the curve $y=x^{2}+7 x+2$, nearest to the line, $y=3 x-3$. Then the equation of the normal to the curve at P is :
(a) $x+3 y-62=0$
(b) $x+3 y+26=0$
(c) $x-3 y-11=0$
(d) $x-3 y+22=0$
15. Let A be a 2×2 real matrix with entries from $\{0,1\}$ and $|A|$ $\neq 0$. Consider the following two statements :
(P) If $A \neq I_{2}$, then $|\mathrm{A}|=-1$
(Q) If $|A|=1$, then $\operatorname{tr}(\mathrm{A})=2$

Where I_{2} denotes 2×2 identity matrix and $\operatorname{tr}(\mathrm{A})$ denotes the sum of the diagonal entries of A. Then :
(a) (P) is true and (Q) are false
(b) Both (P) and (Q) are true
(c) Both (P) and (Q) are false
(d) (P) is false and (Q) are true
16. Let s be the set of all $\lambda \in R$ which the system of linear equations
$2 x-y+2 z=2$
$\mathrm{x}-2 \mathrm{y}+\lambda z=-4$
$x+\lambda y+z=4$
has no solution, then the set S
(a) is a singleton
(b) contains exactly two elements
(c) contains more than two elements
(d) is an empty set
17. If the tangent to the curve $y=x+\operatorname{siny}$ at a point (a, b) is parallel to the line joining $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$, then
(a) $|b-a|=1$
(b) $b=\frac{\pi}{2}+a$
(c) $|a+b|=1$
(d) $\mathrm{b}=\mathrm{a}$
18. If a function $\mathrm{f}(\mathrm{x})$ defined by

$$
f(x)=\begin{array}{cc}
a e^{x}+b e^{-x}, & -1 \leq x<1 \\
c x^{2}, & 1 \leq x \leq 3 \\
a x^{2}+2 c x, & 3<x \leq 4
\end{array}
$$

Be continuous for some $a, b, c \in R$ and $f^{\prime}(0)+f^{\prime}(2)=e$, then the value of a is :
(a) $\frac{1}{e^{2}-3 e+13}$
(b) $\frac{e}{e^{2}-3 e+13}$
(c) $\frac{e}{e^{2}-3 e-13}$
(d) $\frac{e}{e^{2}+3 e+13}$
19. Let α and β be the roots of the equation, $5 x^{2}+6 x-2=$ 0 . If $S_{n}=\alpha^{n}+\beta^{n} \mathrm{n} \mathrm{n}=1,2,3, \ldots$. , then :
(a) $6 S_{6}+5 S_{5}=2 S_{4}$
(b) $5 S_{6}+6 S_{5}=2 S_{4}$
(c) $5 S_{6}+6 S_{5}+2 S_{4}=0$
(d) $5 S_{6}+5 S_{5}+2 S_{4}=0$
20. Let $X=\{x \in N: 1 \leq 1 \leq 17\}$ and $Y=\{a x+b: x \in X$ and $a, b \in R, a>0\}$. If mean and variance of elements of Y are 17 and 216 respectively then $\mathrm{a}+\mathrm{b}$ is equal to :
(a) 7
(b) 9
(c) -7
(d) -27
21. Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $|\vec{a}-\vec{c}|^{2}+$ $|\vec{a}-\vec{c}|^{2}=8$. Then $|\vec{a}+2 \vec{b}|^{2}+|\vec{a}+2 \vec{c}|^{2}$ is equal to
22. If $\lim _{x \rightarrow 1} \frac{x+x^{2}+x^{3}+\cdots+x^{n}-n}{x-1}=820,(\mathrm{n} \in \mathrm{N})$ then the value of n is equal to
23. The number of integral values of k for which the line, $3 x+$ $4 \mathrm{y}=\mathrm{k}$ intersects the circle, $x^{2}+y^{2}-2 x-4 y+4=0$ at two distinct points is \qquad
24. If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning be listed as in a dictionary, then the position of the word 'MOTHER' is
25. The integral $\int_{0}^{2}| | x-1|-1| d x$ is equal to :

ANSWER

1. (a)
2. (c)
3. (c)
4. (a)
5. (b)
6. (a)
7. (d)
8. (d)
9. (b)
10. (a)
11. (b)
12. (d)
13. (d)
14. (b)
15. (b)
16. (b)
17. (a)
18. (b)
19. (b)
20. (c)
21. (02.00)22. (40.00) 23. (09.00) 24. (309.00) 25. (01.50)
