impetus

4.

MATHEMATICS

- **1.** Let L_1 be a tangent to the parabola $y^2 = 4(x + 1)$ and L_2 be a tangent to the parabola $y^2 = 8(x + 2)$ such that L_1 and L_2 intersect at right angles. Then L_1 and L_2 the straight line :
 - (a) x + 3 = 0(b) 2x + 1 = 0(c) x + 2y = 0(d) x + 2 = 0
- 2. If f(x + y) = f(x) f(y) and $\sum_{x=1}^{\infty} f(x) = 2, x, y \in N$, where N is the set of all natural numbers, then the value of $\frac{f(4)}{f(2)}$ is :
 - (a) $\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{1}{9}$ (d) $\frac{4}{9}$
- **3.** If $\sum_{i=1}^{n} (x_i a) = n$ and $\sum_{i=1}^{n} (x_i a)^2 = na$, (n, a > 1) then the standard deviation of n observations x_1, x_2, \dots, x_n is
 - (a) a 1(b) $\sqrt{n(a-1)}$ (c) $n\sqrt{(a-1)}$ (d) $\sqrt{(a-1)}$ A $\lim_{x \to 1} \left[\frac{\int_{0}^{(x-1)^{2} t\cos{(t^{2})}dt}}{(x-1)\sin(x-1)} \right]$ (a) is equal to 1 (b) does not exist (c) is equal to $\frac{1}{2}$ (d) is equal to $-\frac{1}{2}$
- 5. Which of the following points lies on the locus of he foot of perpendicular drawn upon any tangent to the ellipse, $\frac{x^2}{4}$ +
 - $\frac{y^2}{2} = 1 \text{ from any of its foci ?}$ (a) (-2, $\sqrt{3}$)
 (b) (-1, $\sqrt{2}$)
 (c) (1, 2)
 (d) (-1, $\sqrt{3}$)
- 6. Out of 11 consecutive natural number if three numbers are selected at random (without repetition), then the probability that they are in A.P. with positive common difference is :
- (a) $\frac{10}{99}$ (b) $\frac{15}{101}$ (c) $\frac{5}{33}$ (d) $\frac{5}{101}$ 7. The area (in sq. units) of the region = { $(x, y): |x| + |y| \le 1, 2y^2 \ge |x|$ }:
 - (a) $\frac{5}{6}$ (b) $\frac{7}{6}$ (c) $\frac{1}{3}$ (d) $\frac{1}{6}$

8. Let m and M be respectively the minimum and maximum value values of $\begin{vmatrix} \cos^2 x & 1 + \sin^2 x & \sin^2 x \\ 1 + \cos^2 x & \sin^2 x & \sin^2 x \\ \cos^2 x & \sin^2 x & 1 + \sin^2 x \end{vmatrix}$ Then the ordered pair (m, M) is equal to :

- (a) (-3, 3) (b) (1, 3) (c) (-3, -1) (d) (-4, -1)
- 9. Let a, b, c, d and ay non zero distinct real numbers such that $(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + (b^2 + c^2 + d^2) = 0$ Then :
 - (a) a, b, c, d are in A.P.
 - (b) a, c, p are in G.P.
 - (c) a, b, c, d are in G.P.
 - (d) a, c, p, are in A.P.

10. If {p} denotes the fractional part of the number p, then $\left\{\frac{3^{200}}{8}\right\}$, is equal to :

(a)
$$\frac{1}{8}$$
 (b) $\frac{3}{8}$ (c) $\frac{7}{8}$ (d) $\frac{5}{8}$

11. The values of λ and μ for which the system of linear equations

x + y + z = 2x + 2y + 3z - 5

$$x + 2y + 3z = 5$$

 $x + 3y + \lambda z = \mu$ has infinitely many solutions are respectively :

- (a) 5 and 8 (b) 4 and 9
- (c) 6 and 8 (d) 5 and 7
- **12.** The region represented by $\{z = x + iy \in C : |z| Re(z) \le 1\}$ is also given by the inequality (a) $v^2 > 2(x + 1)$

(a)
$$y^2 \ge 2(x+1)$$

(b) $y^2 \le x + \frac{1}{2}$

$$(0) y^{-} \leq \left(x + \frac{1}{2}\right)$$

- (d) $y^2 \ge x + 1$
- **13.** The general solution of the differential equation $\sqrt{1 + x^2 + y^2 + x^2y^2} + xy\frac{dy}{dx} = 0$ (where C is a constant of integration)

(a)
$$\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2+1}} \right) + C$$

(b) $\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2+1}} \right) + C$
(c) $\sqrt{1+y^2} - \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2+1}} \right) + C$
(d) $\sqrt{1+y^2} - \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2-1}} \right) + C$

14. The position of moving car at time tis given by $f(t) = at^2 + bt + c, t > 0$, where a, b and c are real numbes greater than 1. Then the average speed of the car over the time interval $[t_1, t_2]$ is attained at the point : (a) $(t_1 + t_3)/2$ (b) $(t_2 - t_1)/2$

- (c) $2a(t_1 + t_2) + b$ (d) $a(t_2 t_1) + b$ 5. The negation of the Boolean expression p v (~ p \land q) is
- **15.** The negation of the Boolean expression $p \vee (\sim p \land q)$ is equivalent to :

(a)
$$p \land \neg q$$
 (b) $\neg p \lor q$
(c) $\neg p \land \neg q$ (d) $\neg p \lor \neg q$

16. Two families with three members each and one family with four members are to be seated in a row. In how many ways can they be seated so that the same family members are not separated ?

(a)
$$2! 3! 4!$$
 (b) $3! (4!)^3$
(c) $(3!)2.(4!)$ (d) $(3!)^3.(4!)$

17. The shortest distance between the lines $\frac{x-1}{0} = \frac{y+1}{-1} = \frac{z}{1}$ and x + y + z + 1 = 0, 2x - y + z + 3 = 0 is

(a)
$$\frac{1}{2}$$
 (b) 1

(c)
$$\frac{1}{\sqrt{3}}$$
 (d) $\frac{1}{\sqrt{2}}$

impetus

A ray of light coming from the point $(2, 2\sqrt{3})$ is incident at 18. an angle 30° on the line x = 1 at the point A. The ray gets reflected on the line x = 1 and meets x-axis at the point B. Then, the line AB passes through the point ;

(a) $\left(4, -\frac{\sqrt{3}}{2}\right)$ (b) $\left(3, -\sqrt{3}\right)$ (c) $\left(4, -\sqrt{3}\right)$ (d) $\left(3, -\frac{1}{\sqrt{3}}\right)$ If $I_1 = \int_0^1 (1 - x^{50})^{100} dx$ and $I_2 = \int_0^1 (1 - x^{50})^{101} dx$ $I_2 = \alpha I_1$ then α equals to : (a) $\frac{5049}{5050}$ (b) $\frac{5051}{5050}$ (c) $\frac{5050}{5051}$ (d) $\frac{5050}{5049}$ If α and β be two roots of the equation $x^2 - 64x + 256 = 0$. Then the value of $\left(\frac{\alpha^3}{\beta^5}\right)^{\frac{1}{8}} + \left(\frac{\beta^3}{\alpha^5}\right)^{\frac{1}{8}}$ is :

19.

20.

(b) 4 (a) 2 (c) 3 (d) 1

- If \vec{a} and \vec{b} are unit vectors, then the greatest value of 21. $\sqrt{3}|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|$ is
- 22. Let AD and BC be two vertical poles at A and B respectively on a horizontal ground. If AD = 8 m, BC = 11 m and AB = 10 m; then the distance (in meters) of a point M on AB from the point A such that $MD^2 + MC^2$ is minimums is
- The angle of elevation of the top of a hill from a point on 23. the horizontal plane passing through the foot of the hill is found to be 45°. After waling a distance of 80 meters towards the top, up a slope inclined at angle of 30° to the horizontal plane the angle of elevation of the top of the hill becomes 75°. Then the height of the hill (in meters) is
- 24. Set A has m elements and Set B has n elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of m-n is
- 25. Let $f: R \to R$ be defined as

 $f(x) = \begin{cases} x^5 \sin\left(\frac{1}{x}\right) + 5x^2, & x < 0\\ 0 & x = 0\\ x^5 \cos\left(\frac{1}{x}\right) + \lambda x^2, \end{cases}$

The value of λ for which f"(0) exists, is

ANSWER

1.	(a)	2. (d)) 3	. (d) 4 .	(bonus)	5. (d)	6. (c)	7. (a)	8. (c)	9. (c)	10. (a)
11.	(a)	12. (c)) 13	. (b)	14. (a)	15. (c)	16. (d)	17. (c)	18. (b)	19. (c)	20. (a)
21.	(4)	22. (5)	23.	(80)	24. (28)	25. (05)					