## MATHEMATICS

1. Let $L_{1}$ be a tangent to the parabola $y^{2}=4(x+1)$ and $L_{2}$ be a tangent to the parabola $y^{2}=8(x+2)$ such that $L_{1}$ and $L_{2}$ intersect at right angles. Then $L_{1}$ and $L_{2}$ the straight line :
(a) $x+3=0$
(b) $2 x+1=0$
(c) $x+2 y=0$
(d) $x+2=0$
2. If $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ and $\sum_{x=1}^{\infty} f(x)=2, x, y \in N$, where N is the set of all natural numbers, then the value of $\frac{f(4)}{f(2)}$ is :
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{1}{9}$
(d) $\frac{4}{9}$
3. If $\sum_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a$, $(n, a>1)$ then the standard deviation of n observations $x_{1}, x_{2}, \ldots \ldots x_{n}$ is
(a) $a-1$
(b) $\sqrt{n(a-1)}$
(c) $n \sqrt{(a-1)}$
(d) $\sqrt{(a-1)}$
4. $\quad \lim _{x \rightarrow 1}\left[\frac{\int_{0}^{(x-1)^{2}} t \operatorname{tcos}\left(t^{2}\right) d t}{(x-1) \sin (x-1)}\right]$
(a) is equal to 1
(b) does not exist
(c) is equal to $\frac{1}{2}$
(d) is equal to $-\frac{1}{2}$
5. Which of the following points lies on the locus of he foot of perpendicular drawn upon any tangent to the ellipse, $\frac{x^{2}}{4}+$ $\frac{y^{2}}{2}=1$ from any of its foci ?
(a) $(-2, \sqrt{3})$
(b) $(-1, \sqrt{2})$
(c) $(1,2)$
(d) $(-1, \sqrt{3})$
6. Out of 11 consecutive natural number if three numbers are selected at random (without repetition), then the probability that they are in A.P. with positive common difference is :
(a) $\frac{10}{99}$
(b) $\frac{15}{101}$
(c) $\frac{5}{33}$
(d) $\frac{5}{101}$
7. The area (in sq. units) of the region $=\{(x, y):|x|+|y| \leq$ $\left.1,2 y^{2} \geq|x|\right\}$ :
(a) $\frac{5}{6}$
(b) $\frac{7}{6}$
(c) $\frac{1}{3}$
(d) $\frac{1}{6}$
8. Let m and M be respectively the minimum and maximum value values of $\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$ Then the ordered pair $(\mathrm{m}, \mathrm{M})$ is equal to :
(a) $(-3,3)$
(b) $(1,3)$
(c) $(-3,-1)$
(d) $(-4,-1)$
9. Let $a, b, c, d$ and ay non zero distinct real numbers such that
$\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)=0$ Then :
(a) a, b, c, d are in A.P.
(b) a, c, p are in G.P.
(c) a, b, c, d are in G.P.
(d) a, c, p, are in A.P.
10. If $\{p\}$ denotes the fractional part of the number $p$, then $\left\{\frac{3^{200}}{8}\right\}$, is equal to :
(a) $\frac{1}{8}$
(b) $\frac{3}{8}$
(c) $\frac{7}{8}$
(d) $\frac{5}{8}$
11. The values of $\lambda$ and $\mu$ for which the system of linear equations
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions are respectively:
(a) 5 and 8
(b) 4 and 9
(c) 6 and 8
(d) 5 and 7
12. The region represented by $\{z=x+i y \in C:|z|-\operatorname{Re}(z) \leq$ $1\}$ is also given by the inequality
(a) $y^{2} \geq 2(x+1)$
(b) $y^{2} \leq x+\frac{1}{2}$
(c) $y^{2} \leq\left(\mathrm{x}+\frac{1}{2}\right)$
(d) $y^{2} \geq \mathrm{x}+1$
13. The general solution of the differential equation $\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0$ (where C is a constant of integration)
(a) $\sqrt{1+y^{2}}+\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}+1}}\right)+C$
(b) $\sqrt{1+y^{2}}+\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}+1}{\sqrt{1+x^{2}+1}}\right)+C$
(c) $\sqrt{1+y^{2}}-\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}+1}}\right)+C$
(d) $\sqrt{1+y^{2}}-\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}+1}{\sqrt{1+x^{2}-1}}\right)+C$
14. The position of moving car at time tis given by $f(t)=$ $a t^{2}+b t+c, t>0$, where $\mathrm{a}, \mathrm{b}$ and c are real numbes greater than 1. Then the average speed of the car over the time interval $\left[t_{1}, t_{2}\right]$ is attained at the point :
(a) $\left(t_{1}+t_{3}\right) / 2$
(b) $\left(t_{2}-t_{1}\right) / 2$
(c) $2 a\left(t_{1}+t_{2}\right)+b$
(d) $a\left(t_{2}-t_{1}\right)+b$
15. The negation of the Boolean expression $p \vee(\sim p \wedge q)$ is equivalent to :
(a) $\mathrm{p} \wedge \sim \mathrm{q}$
(b) $\sim p \vee q$
(c) $\sim p \wedge \sim q$
(d) $\sim p \vee \sim q$
16. Two families with three members each and one family with four members are to be seated in a row. In how many ways can they be seated so that the same family members are not separated ?
(a) 2 ! 3 ! 4 !
(b) $3!(4!)^{3}$
(c) (3!)2.(4!)
(d) $(3!)^{3}$.(4!)
17. The shortest distance between the lines $\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$ and $x+y+z+1=0,2 x-y+z+3=0$ is
(a) $\frac{1}{2}$
(b) 1
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{1}{\sqrt{2}}$
18. A ray of light coming from the point $(2,2 \sqrt{3})$ is incident at an angle $30^{\circ}$ on the line $x=1$ at the point $A$. The ray gets reflected on the line $x=1$ and meets $x$-axis at the point $B$. Then, the line $A B$ passes through the point ;
(a) $\left(4,-\frac{\sqrt{3}}{2}\right)$
(b) $(3,-\sqrt{3})$
(c) $(4,-\sqrt{3})$
(d) $\left(3,-\frac{1}{\sqrt{3}}\right)$
19. If $I_{1}=\int_{0}^{1}\left(1-x^{50}\right)^{100} d x$ and $I_{2}=\int_{0}^{1}\left(1-x^{50}\right)^{101} d x \quad I_{2}=$ $\alpha I_{1}$ then $\alpha$ equals to :
(a) $\frac{5049}{5050}$
(b) $\frac{5051}{5050}$
(c) $\frac{5050}{5051}$
(d) $\frac{5050}{5049}$
20. If $\alpha$ and $\beta$ be two roots of the equation $x^{2}-64 x+256=$ 0 . Then the value of $\left(\frac{\alpha^{3}}{\beta^{5}}\right)^{\frac{1}{8}}+\left(\frac{\beta^{3}}{\alpha^{5}}\right)^{\frac{1}{8}}$ is :
(a) 2
(b) 4
(c) 3
(d) 1
21. If $\vec{a}$ and $\vec{b}$ are unit vectors, then the greatest value of $\sqrt{3}|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ is
22. Let $A D$ and $B C$ be two vertical poles at $A$ and $B$ respectively on a horizontal ground. If $A D=8 \mathrm{~m}, \mathrm{BC}=11$ m and $\mathrm{AB}=10 \mathrm{~m}$; then the distance (in meters) of a point $M$ on $A B$ from the point $A$ such that $M D^{2}+M C^{2}$ is minimums is $\qquad$
23. The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be $45^{\circ}$. After waling a distance of 80 meters towards the top, up a slope inclined at angle of $30^{\circ}$ to the horizontal plane the angle of elevation of the top of the hill becomes $75^{\circ}$. Then the height of the hill (in meters) is
24. Set $A$ has $m$ elements and Set $B$ has $n$ elements. If the total number of subsets of $A$ is 112 more than the total number of subsets of $B$, then the value of $m-n$ is $\qquad$
25. Let $f: R \rightarrow R$ be defined as
$f(x)=\left\{\begin{array}{cc}x^{5} \sin \left(\frac{1}{x}\right)+5 x^{2}, & x<0 \\ 0 & x=0 \\ x^{5} \cos \left(\frac{1}{x}\right)+\lambda x^{2}, & \end{array}\right.$
The value of $\lambda$ for which $\mathrm{f}^{\prime \prime}(0)$ exists, is $\qquad$

## ANSWER

1. (a)
2. (d)
3. (d) 4. (bonus)
4. (d)
5. (c)
6. (a)
7. (c)
8. (c)
9. (a)
10. (a)
11. (c)
12. (b)
13. (a)
14. (c)
15. (4)
16. (5)
17. (80)
18. (28)
19. (05)
20. (d)
21. (c)
22. (b)
23. (c)
24. (a)
