impetus

MATHEMATICS

- 1. A survey shows that 73% of the persons working in an office like coffes, whereas 65% like tea. If x denotes the percentage of them, who like both coffee and tea, then x cannot be:
 - (a) 36
- (c)38
- If the function $f(x) = \begin{cases} k_1(x-\pi)^2 1, & x \le \pi \\ k_2 cos x, & x > \pi \end{cases}$ is twice 2. differentiable, then the ordered pair $(k_1,\,k_2)$ is equal to :
 - (a) $(\frac{1}{2}, -1)$
- (b) $(\frac{1}{2}, 1)$
- (d) (1, 1)
- If $3^{2sin2\alpha-1}$, 14 and $3^{4-2sin2\alpha}$ are the first three terms of an 3. A.P. for some α , then the sixth term of this A.P. is
- (b) 65
- (c) 66
- (d) 78
- If S is the sum of the first 10 terms of the series 4. $tan^{-1}\left(\frac{1}{3}\right) + tan^{-1}\left(\frac{1}{7}\right) + tan^{-1}\left(\frac{1}{13}\right) + tan^{-1}\left(\frac{1}{21}\right) + \dots$ then tan(S) is equal to:
 - (a) $-\frac{6}{5}$

- (a) $-\frac{6}{5}$ (b) $\frac{5}{11}$ (c) $\frac{5}{6}$ (d) $\frac{10}{11}$ If $2^{10} + 2^9 \cdot 3^1 + 2^8 \cdot 3^2 + \dots + 2 \cdot 3^9 + 3^{10} = 3^{10} = S 2^{11}$ 5. then S is equal to
 - (a) 3^{11}
- (b) 2.3¹¹
- (c) $\frac{3^{11}}{2} + 2^{10}$
- (d) $3^{11} 2^{12}$
- If the common tangent to the parabolas, $y^2 = 4x$ and $x^2 =$ 6. 4y also touches the circles, $x^2 + y^2 = c^2$, then c is equal to:

- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ If y = y(x) is the solution of the differential equation 7. $\frac{5+e^x}{2+y}\frac{dy}{dx} + e^x = 0$ satisfying y(0) = 1, then a value of $y(log_e13)$ is
 - (a) -1
- (c) 2
- (a) -1 (b) 0 (c) 2 (d) 1 If $\int (e^{2x} + 2e^x e^{-x} 1)e^{(e^x + e^{-x})} dx = g(x)e^{(e^x + e^{-x}) + c}$, 8. where c is a constant of integration, then g(0) is equal to :
- (c) e^2
- If α is the positive root of the equation, $p(x) = x^2 x x$ 9. 2=0, then $\lim_{x\to a} \frac{\sqrt{1-\cos(p(x))}}{x+a-4}$ is equal to :

- 10. If the co-ordinates of two points A and B are $(\sqrt{7},0)$ and $(-\sqrt{7},0)$ respectively and P is any point on the conic, $9x^2 + 16y^2 = 144$, then PA + PB is equal to :
- (b) 16
- (c) 9
- The product of the roots of the equation $9x^2 18|x| + 5 =$ 11.

- 12. If the volume of a parallelepiped, whose conterminous edges are given by the vectors $\vec{a} = \hat{i} + \hat{j} + n\hat{k}$,
 - $\vec{b} = 2\hat{\imath} + 4\hat{\jmath} n\hat{k}$ and $\vec{c} = \hat{\imath} + n\hat{\jmath} + 3\hat{k}$ (n \geq 0), is 158 cuunits, then:
 - (a) n = 7
- (b) n = 9
- (c) $\vec{b} \cdot \vec{c} = 10$
- (d) $\vec{a} \cdot \vec{c} = 17$
- 13. If the point P on the curve, $4x^2 + 5y^2 = 20$ is farthest from the point Q(0, -4) then PQ^2 is equal to :
 - (a) 29
- (b) 48
- (c) 21
- (d) 36
- 14. If (a, b, c) is the image of the point (1, 2, -3) in the line, $\frac{x+1}{2} - \frac{y-3}{-2} = \frac{z}{-1}$, then a + b + c is equal to: (a) 3 (b) -1 (c) 2

- 15. If the four complex numbers z, \bar{z} , $\bar{z} - 2Re(\bar{z})$ and z -2Re(z) represent the vertices of a square of side 4 units in the Argand plane, then |z| is equal to:
- (c) $4\sqrt{2}$
- (d) $2\sqrt{2}$
- 16. If the minimum and the maximum values of the function $f: \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \to \mathbb{R}$, defined by

$$f(\theta) = \begin{vmatrix} -sin^2\theta & -1 - sin^2\theta & 1 \\ -cos^2\theta & -1 - cos^2\theta & 1 \\ 12 & 10 & -2 \end{vmatrix} \text{ are m} \quad \text{and} \quad M$$
 respectively, then the ordered pair (m, M) is equal to :

- (a) (-4, 4)
- (b) $(0, 2\sqrt{2})$
- (c) (-4, 0)

18.

- (d) (0, 4)
- 17. The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to:
 - (a) $(\sim x \land y) \lor (\sim x \land \sim y)$ (b) $(x \land y) \lor (\sim x \land \sim y)$
 - (c) $(x \land \sim y) \lor (\sim x \land y)$ (d) $(x \land y) \land (\sim x \lor \sim y)$ Let $\lambda \in R$. The system of linear equations

$$2x_1 - 4x_2 + \lambda x_3 = 1$$

$$2\lambda_1$$
 $4\lambda_2$ 1 $1\lambda_3$ $-$

$$x_1 - 6x_2 + x_3 = 2$$
$$\lambda x_1 - 10x_2 + 4x_3 = 3$$

- In inconsistent for:
- (a) every value of λ
- (b) exactly two values of λ (c) exactly one positive value of λ
- (d) exactly, one negative value of λ
- 19. The mean and variance of 7 observations are 8 and 16, respectively. If five observation are 2, 4, 10, 12, 14 then the absolute difference of the remaining two observations is
 - (a) 1

- The value of $\int_{-\pi/2}^{\pi/2} \frac{1}{1 + e^{\sin x}} dx$ is
- (c) $\frac{3\pi}{2}$
- The number of words, with or without meaning, that can 21. be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike, is _

impetus

- **22.** The natural number m, for which the coefficient of x in the binomial expansion of $\left(x^m + \frac{1}{x^2}\right)^{22}$ is 1540, is _____
- 23. If the line, 2x y + 3 = 0 is at a distance $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$ from the lines $4x 2y + \alpha = 0$ and $6x 3y + \beta = 0$, respectively, then the sum of all possible values of α and β is _____
- **24.** Let $f(x) = x \cdot \left[\frac{x}{2}\right]$, for -10 < x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to _____
- **25.** Four fair dice are thrown independently 27 times. Then the expected number of times at least two dice show up a three or a five, is ______

impetus

<u>ANSWER</u>

6. (a) **1.** (a) **2.** (b) **3.** (c) **4.** (c) **5.** (a) **7.** (a) **8.** (d) **9.** (b) **10.** (a) **11.** (a) **12.** (c) **13.** (d) **14.** (c) **15.** (d) **16.** (c) **17.** (b) **18.** (d) **19.** (b) **20.** (b) **21.** (240.00)**22.** (13.00)**23.** (30.00)**24.** (08.00)**25.** (11.00)