impetus

CBT - 01

- The product $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}}$ to ∞ is equal to 1. (b) $2^{\frac{1}{2}}$ (c) 1 (d) 2 (a) $2^{\frac{1}{4}}$ If f' (x) = tan⁻¹ (secx + tanx), $-\frac{\pi}{2} < x < \frac{\pi}{2}$, and 2. f(0) = 0, then f(1) is equal to : (b) $\frac{\pi + 2}{4}$ (a) $\frac{1}{4}$ (c) $\frac{\pi - 1}{4}$ (d) $\frac{\pi + 1}{4}$ The value of $\int_{0}^{2\pi} \frac{x \sin^8 x}{\sin^8 x + \cos^8 x} dx$ is equal to 3. (b) π^2 (c) 4π (d) $2\pi^2$ (a) 2π 4. The value of $\cos^3\left(\frac{\pi}{8}\right) \cdot \cos\left(\frac{3\pi}{8}\right) + \sin^3\left(\frac{\pi}{8}\right) \cdot \sin\left(\frac{3\pi}{8}\right)$ is (a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$ If the matrices $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{bmatrix}$, B = adj A and C = 5. 3A, then $\frac{|adjB|}{|C|}$ is equal to (a) 72 (b) 8 (c) 16 (d) 2 A circle touches the y-axis at the point (0, 4) and 6. passes through the point (2, 0). Which of the following lines is not a tangent to this circle ? (a) 4x - 3y + 17 = 0(b) 3x - 4y - 24 = 0(c) 3x + 4y - 6 = 0(d) 4x + 3y - 8 = 07. A spherical iron ball of 10 cm radius is coated with a layer of ice of uniform thickness that melts at a rate of 50 cm³/min. When the thickness of ice is 5 cm, then the rate (in cm/min.) at which of the thickness of ice decreases, is: (a) $\frac{5}{6\pi}$ (b) $\frac{5}{36\pi}$ (c) $\frac{1}{18\pi}$ (d) $\frac{1}{54\pi}$ Negation of the statement : 8. $\sqrt{5}$ is an integer or 5 is irrational is :
 - (a) $\sqrt{5}$ is not an integer or 5 is not irrational
 - (b) $\sqrt{5}$ is an integer and 5 is irrational
- l/Jan/09/20

- (c) $\sqrt{5}$ is irrational or 5 is an integer.
- (d) $\sqrt{5}$ is not an integer and 5 is not irrational
- 9. The integral $\int \frac{dx}{(x+4)^{8/7}(x-3)^{6/7}}$ is equal to

(where C is a constant of integration)

(a)
$$\left(\frac{x-3}{x+4}\right)^{1/7} + C$$

(b) $-\frac{1}{13}\left(\frac{x-3}{x+4}\right)^{-13/7} + C$
(c) $\frac{1}{2}\left(\frac{x-3}{x+4}\right)^{3/7} + C$
(d) $-\left(\frac{x-3}{x+4}\right)^{-1/7} + C$

- If the number of five digit numbers with distinct digits and 2 at the 10th place is 336 k, then k is equal to :
 - (a) 7 (b) 4 (c) 6 (d) 8
- **11.** In an box, there are 20 cards, out of which 10 are labelled as A and the remaining 10 are labelled as B. Cards are drawn at random, one after the other and with replacement, till a second A-card is obtained. The probability that the second A-card appears before the third B-card is :
 - (a) $\frac{13}{16}$ (b) $\frac{15}{16}$ (c) $\frac{9}{16}$ (d) $\frac{11}{16}$
- **12.** Let z be a complex number such that $\left|\frac{z-i}{z+2i}\right| = 1$

and $|z| = \frac{5}{2}$. Then the value of |z + 3i| is :

(a) $\sqrt{10}$	(b) $2\sqrt{3}$
(c) $\frac{7}{2}$	(d) $\frac{15}{4}$

13. If for some α and β in R, the intersection of the following three planes

$$x + 4y - 2z = 1$$

 $x + 7y - 5z = \beta$
 $x + 5y + \alpha z = 5$
s a line in R³, then $\alpha + \beta$ is equal to
a) 0 (b) - 10
c) 10 (d) 2

impetus

			Tour Ambition
14.	The number of real roots of the equation,		
15.	$e^{4x} + e^{3x} - 4e^{2x} + e^{x} + 1 = 0 \text{ is }:$ (a) 3 (b) 1 (c) 4 (d) 2 Let f be any function continuous on [a, b] and twice differentiable on (a, b). If for all $x \in (a, b)$, f'(x) > 0 and f''(x) < 0, then for any $c \in (a, b)$, $\frac{f(c) - f(a)}{f(b) - f(c)}$ is greater than	19.	Let C be the centroid of the triangle with vertices $(3, -1)$, $(1, 3)$ and $(2, 4)$. Let P be the point of intersection of the lines $x + 3y - 1 = 0$ and $3x - y + 1 = 0$. Then the line passing through the points C and P also passes through the point (a) (7, 6) (b) (-9, -7) (c) (9, 7) (d) (-9, -6) $\left[\frac{\sin(a+2)x + \sin x}{\cos(a+2)x + \sin x}\right]; x < 0$
16.	(a) 1 (b) $\frac{b-c}{c-a}$ (c) $\frac{c-a}{b-c}$ (d) $\frac{b+a}{b-a}$ If for all real triplets (a, b, c), f(x) = a + bx + cx ² ;	20.	If $\begin{cases} x \\ b \\ (x+3x^2)^{1/3} - x^{1/3} \\ \frac{(x+3x^2)^{1/3} - x^{1/3}}{x^{4/3}} \\ \vdots \\ x > 0 \end{cases}$ = 0, then a + 2b is equal to : (a) 1 (b) 0 (c) - 2 (d) - 1
	then $\int_{0}^{1} f(x) dx$ is equal to : (a) $\frac{1}{3} \left\{ f(0) + f\left(\frac{1}{2}\right) \right\}$ (b) $\frac{1}{3} \left\{ f(1) + 3f\left(\frac{1}{2}\right) \right\}$ (c) $\frac{1}{6} \left\{ f(0) + f(1) + 4f\left(\frac{1}{2}\right) \right\}$	21.	The number of distinct solutions of the equation, $log_{1/2} sinx = 2 - log_{1/2} cosx $ in the interval [0, 2π], is (a) 8 (b) 4 (c) 6 (d) 2 The projection of the line segment joining the points (1, -1, 3) and (2, -4, 11) on the line joining the points (-1, 2, 3) and (3, -2, 10) is : (a) 5 (b) 10 (c) 4 (d) 8
17.	(d) $2\left\{3f(1)+2f\left(\frac{1}{2}\right)\right\}$ Let the observations xi $(1 \le i \le 10)$ satisfy the equations, $\sum_{i=1}^{10} (x_i-5)=10$ and $\sum_{i=1}^{10} (x_i-5)^2 = 40$. If μ and λ are the mean and the variance of the observations, x ₁ - 3, x ₂ - 3, x ₁₀ - 3, then the ordered pair (μ , λ) is equal to : (a) (3, 3) (b) (3, 6) (c) (6, 6) (d) (6, 3) If e ₁ and e ₂ are the eccentricities of the ellipse, $\frac{x^2}{18} + \frac{y^2}{4} = 1$ and the hyperbola, $\frac{x^2}{9} - \frac{y^2}{4} = 1$	23. 24. 25.	The coefficient of x ⁴ in the expansion of $(1 + x + x^2)^{10}$ is (a) 612 (b) 302 (c) 614 (d) 615 If for $x \ge 0$, $y = y(x)$ is the solution of the differential equation, $(x + 1)dy = \{(x + 1)^2 + y - 3\}dx$, $y(2) = 0$, then y(3) is equal to : (a) 1 (b) 2 (c) 0 (d) 3 if the vectors, $\vec{p} = (a+1)\hat{i} + a\hat{j} + a\hat{k}, \vec{q} = a\hat{i} + (a+1)\hat{j} + a\hat{k}$ and $\vec{r} = a\hat{i} + a\hat{j} + (a+1)\hat{k}, (a \in R)$ are coplanar and $3(\vec{p} \cdot \vec{q})^2 - \lambda \vec{r} \times \vec{q} ^2 = 0$, then the value of λ is :
	respectively and (e1, e2) is a point on the ellipse, $15x^2 + 3y^2 = k$, then k is equal to (a) 14 (b) 15	5	(a)0 (b)3 (c)2 (d)1

(a) 14 (b) 15 (c) 16 (d) 17

impetus

DPT - 01 ANSWER KEY (Mock Test)							
1. (b) 2. (d) 3. (b) 11. (d) 12. (c) 13. (c)		6. (d) 7. (c) 8. (c) 16. (c) 17. (a) 18. (c)					
	24. (d) 25. (d)						