impetus

JEE MAIN 2020 SHIFT-01

1. If the system of linear equations

2x + 2ay + az = 0

- 2x + 3by + bz = 0
- 2x + 4cy + cz = 0,

where a, b, $c \in R$ are non-zero and distinct; has a non-zero solution, then (a) a, b, c are in A.P. (b)1/a, 1/b,1/c are in A.P.

- (c) a + b + c = 0
- (d) a, b, c are in G.P.

2. If
$$y(\alpha) = \sqrt{2\left(\frac{\tan \alpha + \cot \alpha}{1 + \tan^2 \alpha}\right) + \frac{1}{\sin^2 \alpha}}, \alpha \in \left(\frac{3\pi}{4}, \pi\right)$$

Then $\frac{dy}{d\alpha}$ at $\alpha = \frac{5\pi}{6}$ is
(a) 4 (b) $\frac{4}{3}$ (c) $-\frac{1}{4}$ (d) -4

- 3. If y = mx + 4 is a tangent to both the parabolas. $y^2 = 4x$ and $x^2 = 2by$, then b is equal to :
 - (a) -64 (b) -32 (c) -128 (d) 128
- Let P be a plane passing through the points (2, 1, 0), (4, 1, 1) and (5, 0, 1) and R be any point (2, 1, 6). Then the image of R in the plane P is:

(a) (6, 5, -2)	(b) (4, 3, 2)
(c) (6, 5, 2)	(d) (3, 4, -2)

- **5.** A vector $\vec{a} = \alpha i + 2j + \beta k(\alpha, \beta \in R)$ lies in the plane of the vectors $\vec{b} = \hat{i} + \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} + 4\hat{k}$. If \vec{a} bisects the angle between b and c, then:
 - (a) $\vec{a} \cdot \hat{k} + 4 = 0$ (b) $\vec{a} \cdot \hat{k} + 2 = 0$ (c) $\vec{a} \cdot \hat{i} + 1 = 0$ (d) $\vec{a} \cdot \hat{i} + 3 = 0$
- 6. If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12, then the length of its latus rectum is:

(a) $\sqrt{3}$ (b) $3\sqrt{2}$	(c) $\frac{3}{\sqrt{2}}$ (d) $2\sqrt{3}$
--------------------------------	--

7. The greatest positive integer k, for which $49^{k} + 1$ is a factor of the sum $49^{125} + 49^{124} + \dots + 49^{2} + 49 + 1$, is (a) 32 (b) 63

()	()
(c) 65	(d) 60

8.	If $g(x) = x^2 + x - 1$ and $(gof)(x) = 4x^2 - 10x + 5$,						
	then f $\left(\frac{5}{4}\right)$ is equal to :						
	(a) $\frac{1}{2}$	(b) $-\frac{3}{2}$					
	2	2					
	(c) $-\frac{1}{2}$	(d) $\frac{3}{2}$					
9.	Let α be a root of equa	tion $x^2 + x + 1 = 0$ and					
	the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 \\ 1 & \alpha \\ 1 & \alpha^2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \alpha^2 \\ \alpha^4 \end{bmatrix}$, then the matrix					
	A ³¹ is equal to						
	(a) A ³	(b) A ²					
	(c) I3	(d) A					
10.	The logical statement						
	$(p \Leftrightarrow q) \land (q \Leftrightarrow \sim p)$ is equ	ivalent to					
	(a) p	(b) q					
	(c ~p	(d) ~ q					
11.	If $\operatorname{Re}\left(\frac{z-1}{2z+i}\right) = 1$, where z	z = x + iy, then the point					
	(x, y) lies on a :						
	(a) Straight line whose slope is $-\frac{2}{3}$						
	(b) Straight line whose slope is $\frac{3}{2}$						
	(c) circle whose diameter is $\frac{\sqrt{5}}{2}$						
	(d) circle whose centre is at $\left \left(-\frac{1}{2},-\frac{3}{2}\right)\right $						
12.	Let $y = f(x)$ is the solution	ution of the differential					
	equation $e^{y}\left(\frac{dy}{dx}-1\right)=e^{x}$ s	uch that $y(0) = 0$, then					
	y(1) is equal to:						
	(a) 2e	(b) 1+log _e 2					
	(c) log _e 2	(d) 2+log _e 2					
13.	Let α and β be	two real roots of					

the $(k+1)\tan^2 x - \sqrt{2} \cdot \lambda \tan x = (1-k)$, where $k(\neq -1)$ and λ are real numbers. $\tan^2(\alpha + \beta) = 50$, then a value of λ is: (a) $10\sqrt{2}$ (b) $5\sqrt{2}$

where

lf

mpetus

(c) 27

The Catalyst of Your Ambition

	(c) 10	(d) 5
14.	Five numbers are product is 2520.	e in A.P., whose sum is 25 and If one of these five numbers is
	$-\frac{1}{2}$, then the gre	atest number amongst them is :
	(a) $\frac{21}{2}$	(b) 16

(a) $\frac{21}{2}$

(d) 7

- 15. If f(a + b + 1 - x) = f(x), for all x, where a and b are fixed positive real numbers, then $\frac{1}{(a+b)}\int_{a}^{b} x(f(x)+f(x+1)) dx$ is equal to (a) $\int_{a+1}^{b+1} f(x+1) dx$ (b) $\int_{a-1}^{b-1} f(x+1) dx$ (c) $\int_{a}^{b+1} f(x) dx$ (d) $\int_{a}^{b-1} f(x) dx$
- 16. Let the function, $f : [-7, 0] \rightarrow R$ be continuous on [-7, 0] and differentiable on (-7, 0). If f(-7) = -3and $f'(x) \le 2$ for all $x \in (-7, 0)$, then for all such functions f, f(-1) + f(0) lies in the interval : (a) [- 6, 20] (b) (-∞, 20] (c) (-∞, 11] (d) [-3, 11]
- Total number of 6-digit numbers in which only 17. and all the five digits 1, 3, 5, 7 and 9 appear, is

(b) $\frac{1}{2}(6!)$ (a) 5^6 (d) $\frac{5}{2}(6!)$ (c) 6!

- 18. An unbiased coin is tossed 5 times. Suppose that a variable X is assigned the value k when k consecutive heads are obtained for k = 3, 4, 5otherwise X takes the value -1. Then the expected value of X, is :
 - (a) $\frac{3}{16}$ (b) $-\frac{1}{8}$ (c) $-\frac{3}{16}$ (d) $\frac{1}{2}$

Let $x^{k} + y^{k} = a^{k}$, (a, k > 0) and $\frac{dy}{dx} + \left(\frac{y}{x}\right)^{\frac{1}{3}} = 0$, 19. then k is (a) $\frac{4}{3}$ (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) $\frac{3}{2}$

The area of the region, enclosed by the circle 20. $x^{2} + y^{2} = 2$ which is not common to the region bounded by the parabola $y^2 = x$ and the straight line y = x, is :

	L
(a) $\frac{1}{3}(6\pi - 1)$	(b) $\frac{1}{3}(12\pi - 1)$
(c) $\frac{1}{6}(12\pi - 1)$	(d) $\frac{1}{6}(24\pi - 1)$

21. If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16, then m + n is equal to (a)14 (b)17 (c)16 (d) 18

22. If the sum of the coefficients of all even powers of x in the product $(1 + x + x^2 + \dots + x^{2n})$ $(1 - x + x^2)$ $-x^{3} + \dots + x^{2n}$) is 61, then n is equal to _____ (a)28 (b) 27 (c)30 (d) 29

- $\lim_{x \to 2} \frac{3^x + 3^{3-x} 12}{3^{-x/2} 3^{1-x}}$ is equal to 23. (a)36 (b)35 (c)37 (d)32
- 24. Let S be the set of points where the function. $f(x) = |2 - |x - 3||, x \in \mathbb{R}$, is not differentiable. Then

 $\sum f(f(x))$ is equal to _____ (b) 3 (a)2 (c)1 (d) 4

Let A(1, 0), B(6, 2) and $C\left(\frac{3}{2}, 6\right)$ be the vertices 25.

of a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point $\left(-\frac{7}{6},-\frac{1}{3}\right)$, is _____

18, Zone-II, M.P. Nagar, Bhopal 🖀 : 0755-4295319

impetus

The Catalyst of
Your Ambition

ANSWER KEY									
1. (b)	2. (a)	3. (c)	4. (a)	5. (b)	6. (b)	7. (b)	8. (c)	9. (a)	10. (c)
11. (c)	12. (b)	13. (c)	14. (b)	15. (b)	16. (b)	17. (d)	18. (d)	19. (b)	20. (c)
21. (d)	22. (c)	23. (a)	24. (b)	25. (c)					